
Introduction to HPC 



What is Parallel Computing? 

Traditionally, software has been written for serial computation: 

 

– To be run on a single computer having a single Central 
Processing Unit (CPU); 

 

– A problem is broken into a discrete series of instructions. 

 

– Instructions are executed one after another. 

 

– Only one instruction may execute at any moment in time. 

 



What is Parallel Computing? 

Parallel computing is the simultaneous use of multiple compute 
resources to solve a computational problem: 

 

– A problem is broken into discrete parts that can be solved 
concurrently 

 

– Instructions from each part execute simultaneously on 
different CPUs 

 



Compute resources 

The compute resources might be: 

 

– A single computer with multiple processors; 

 

– An arbitrary number of computers connected by a 
network; 

 

– A combination of both. 



Why Use Parallel Computing? 

Save time and/or money:  

in theory, more resources we use, shorter the time to finish, with potential 
cost savings. 

 

Solve larger problems:  

when the problems are so large and complex, it is impossible to solve them 
on a single computer. For example: the so called "Grand Challenge" problems 
requiring PetaFLOPS and PetaBytes of computing resources. 

(en.wikipedia.org/wiki/Grand_Challenge)  

 

Limits to serial computing: there are physical and practical reasons: 

•Transmission speeds  

•Limits to miniaturization  

•Economic limitations 
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Why computing power is never 
enough? 

Many scientific problems can be tackled only by increasing 
processor performances. 

 

Highly complex or memory greedy problems can be solved only 
with greater computing capabilities: 

 

– Weather modelling 

– Protein analysis 

– Medical drugs research 

– Energy research 

– Huge data amount analysis 

 



Challenging research fields 

Weather modelling 

Global weather forecasts require large datasets and complex computations. 
Even using the most powerful computers, numerical weather models at now 
can extend forecasts to about a week only. The accuracy of numerical 
predictions depends on the quality of observations together with the 
quality of the numerical models, but anyhow is limited by the chaotic 
nature of the partial differential equations used for climate modeling. 

 

Protein analysis 

Proteins are very complex molecules that have a great importance in life 
science and disease treatment research. High performance computers are 
needed to study all possible protein foldings and their interactions with 
other molecules. These computations may lead to astonishing 
improvements in treating many diseases including Huntington, Parkinson, 
Alzheimer 

 



Challenging research fields 

Medical drugs research 

Interaction analysis between pharmaceutical molecules and 
human physiology can lead to discovery of effective medical 
drugs. As an example gene analysis may be useful to produce 
more effective personalised medical drugs with less side 
effects. 

 

Energy research 

Design and production of efficient wind turbins, solar cells, 
electric batteries depend on the availability of high 
performance computers. This kind of studies are important to 
increase efficiency of energy production and exploitation.  

 



Challenging research fields 

 

Data analysis 

World data storage capability doubles every two years, but many stored 
informations are never analysed. One of the reasons is that the analysis of 
such huge amount of data requires enormous computing powers.  

For example genome and protein data bases contain a lot of data that can be 
useful to better understand life evolution or medical drugs behavior.  

Huge data amount are generated also by modern particle accelerators during 
collision events. For example the CERN Large Hadron Collider in Geneva is 
expected to produce an average of more than 27 TeraBytes of data  per day. 
The analysis of these data could be important in astrophysics, phisics and 
medicine. 

 



Chip performance improvement 

Processor computational capability is growing continuously! 

• Smaller transistors => higher processor circuits density 

• Higher transistor density => higher computing speed 

• Higher computing speed => higher heating and electricity consumption 

 

i486 (1989) 

1,2M transistors 
 

itanium2 (2003) 

220M transistors 
 

Xeon nehalem (2007) 

781M transistors 
 

Xeon nehalem-ex (2011) 

2300M transistors 
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How to manage transistor density? 

Heating of chips in processors grows together with computational speed. 

Processor performances decrease and chips may be damaged by too high 
temperatures. 

Processor cooling with air or water is not as efficient as should be. 

Even if it would be possible to increase transistor density, there are physical 
limits in making cheap faster processors. 
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Multi-core processors 
But it is possible to increase computational speed using parallelism! 

 

If transistors become smaller it is possible to realize chips with more 
transistors. Computing power may be increased by duplicating computing 
circuits rather then raising speed. This leads to more powerful computers 
with less expensive cooling features. 

 

This leads to multi-core processors with a multiplicity of computing units 
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TOP500 
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von Neumann Architecture 

• RAM is used to store both program instructions and 
data 

• Program instructions are coded data which tell the 
computer to do something 

• Data is simply information to be used by the 
program 

• Control unit fetches instructions/data from 
memory, decodes the instructions and then 
sequentially coordinates operations to accomplish 
the programmed task. 

• Aritmetic Unit performs basic arithmetic operations 

• Input/Output is the interface to the human 
operator 

 

Parallel computers still follow this basic design,         
just multiplied in units. The basic, fundamental 
architecture remains the same. 

 



Flynn's Taxonomy 

 

There are different ways to classify parallel computers. One of the more 
widely used classifications, in use since 1966, is called Flynn's Taxonomy. 

 

S I S D = Single Instruction, Single Data 

 

S I M D = Single Instruction, Multiple Data 

 

M I S D = Multiple Instruction, Single Data 

 

M I M D = Multiple Instruction, Multiple Data 

 



Single Instruction, Single Data     
(SISD) 

• Classical von Neumann architecture: serial computer 

 

• Single Instruction: Only one instruction is executed by the CPU during any 
one clock cycle 

 

• Single Data: Only one data stream is being used as input during any one 
clock cycle 

 

• This is the oldest and the most common type of computer 

 

• Examples: older generation mainframes and workstations; most modern 
day PCs. 

 



Single Instruction, Multiple Data 
(SIMD) 

• A type of parallel computer 

 

• Single Instruction: All processing units execute the same instruction at any 
given clock cycle 

 

• Multiple Data: Each processing unit can operate on a different data 
element 

 

• Best suited for specialized problems characterized by a high degree of 
regularity, such as graphics/image processing. 

 

• Most modern computers, particularly those with graphics processor     
units (GPUs) employ SIMD instructions and execution units. 



Multiple Instruction, Single Data 
(MISD) 

• A type of parallel computer 

 

• Multiple Instruction: Each processing unit operates on the 
data independently via separate instruction streams. 

 

• Single Data: A single data stream is fed into multiple 
processing units. 

 

• Few actual examples of this class of parallel computer have 
ever existed.  

 



Multiple Instruction, Multiple Data 
(MIMD) 

• A type of parallel computer 

 

• Multiple Instruction: Every processor may be executing a different 
instruction stream 

 

• Multiple Data: Every processor may be working with a different data 
stream 

 

• Currently, the most common type of parallel computer - most modern 
supercomputers fall into this category. 

 

• Note: many MIMD architectures also include SIMD execution sub-
components 

 



Multiple Instruction, Multiple Data 
(MIMD) 

PLX Cluster 



CPU-GPU Cluster  

• Hybrid solutions: multicore CPU + manycore GPU 

– Each node has multicore CPU and graphics cards designed for GPU 
computing 

– considerable theoretical computing power on single node 

– additional memory layer on GPU 

– OpenMP, MPI, CUDA and hybrid solutions with MPI+OpenMP, 
MPI+CUDA, OpenMP+CUDA, OpenMP+MPI+CUDA 

 



CPU vs GPU 

• CPUs are general purpose processor able to solve any kind of algorithm 
BUT it reach the best performance using just one thread in a 
computational core. 

 

• GPU are «specialized» processors for problems that can be classified as 
«intense data-parallel computations»: 

– Lot of small threads working in parallel 

 



Concepts and Terminology 

• Task = a logically discrete section of computational work. A task is typically 
a program set of instructions that is executed by a processor. A parallel 
program consists of multiple tasks running on multiple processors. 
 

 

 

• Pipelining = breaking a task into steps performed by different processor 

units; a type of parallel computing. 

 



Concepts and Terminology 

• Shared Memory = a computer architecture where all processors have 
direct access to common physical memory. Also, it describes a model 
where parallel tasks can directly address and access the same logical 
memory locations. 

• Distributed Memory = network based memory access for physical 
memory that is not common. As a programming model, tasks can only 
logically "see" local machine memory and must use communications to 
access memory on other machines where other tasks are executing. 

 

 

 

 

 

 Shared Memory                              Distributed Memory 

 



Concepts and Terminology 

• Communications = parallel tasks typically need to exchange data. 
There are several ways to do that: through a shared memory bus 
or over a network. 

 

 

• Synchronization = the coordination of parallel tasks in real time, 
very often associated with communications. Usually implemented 
by establishing a synchronization point where a task may not 
proceed further until another task(s) reaches the same or logically 
equivalent point. Synchronization can cause an increase of the wall 
clock execution time. 

 



Concepts and Terminology 

Speedup 

Speedup of a code which has been parallelized, defined as: 

Wall-clock time (serial execution) / wall-clock time (parallel execution) 

It is used as an indicator for a parallel program's performance. 

 

Parallel Overhead = the amount of time required to coordinate parallel tasks. 
Parallel overhead can include factors such as: 

•Task start-up time 

•Synchronizations 

•Data communications 

•Software overhead imposed by parallel compilers, libraries, tools, operating 
system, etc. 

•Task termination time 

 



Concepts and Terminology 

• Massively Parallel = refers to the hardware that comprises a given parallel 
system - having many processors.  

 

• Embarrassingly Parallel = solving many similar, but independent tasks 
simultaneously; it needs just few coordination between the tasks. 

 

• Scalability = the ability of a parallel system to proportionate increase in 
parallel speedup with the addition of more processors. Factors that 
contribute to scalability include: 

– Hardware: memory-cpu bandwidths and network communications 

– Application algorithm 

– Parallel overhead  

 



Parallel Computer Memory 
Architectures 

Shared Memory 

 

General Characteristics: 

•All processorc can access all memory as global address space. 

 

•Multiple processors can operate independently but share the same memory 
resources. 

 

•Changes in a memory location effected by one processor are visible to all 
other processors. 

 

•Shared memory machines can be divided into two main classes based      
upon memory access times: UMA and NUMA. 

 



Parallel Computer Memory 
Architectures 

Uniform Memory Access (UMA): 

•Represented by Symmetric Multiprocessor (SMP) machines 

•Identical processors 

•Equal access and access times to memory 

 

Uniform Memory Access 



Parallel Computer Memory 
Architectures 

 Non-Uniform Memory Access (NUMA): 

•Often made by physically linking two or more SMPs 

•One SMP can directly access memory of another SMP 

•Not all processors have equal access time to all memories 

•Memory access across link is slower 

 

Non Uniform Memory Access 



Parallel Computer Memory 
Architectures 

Distributed Memory 

 

General Characteristics: 

•Distributed memory systems require a communication network to connect 
inter-processor memory. 

•Processors have their own local memory. Memory addresses in one 
processor do not map to another processor, so there is no concept of global 
address space across all processors. 

•Because each processor has its own local memory, it operates 
independently. Changes it makes to its local memory have no effect on the 
memory of other processors.  

•When a processor needs access to data in another processor, it is usually the 
task of the programmer to explicitly define how and when data is 
communicated. Synchronization between tasks is likewise the programmer's 
responsibility. 

 



Parallel Computer Memory 
Architectures 

Hybrid Distributed-Shared Memory 

 

General Characteristics: 

•The largest and fastest computers in the world today employ both shared 
and distributed memory architectures. 

•The shared memory component can be a cache coherent SMP machine 
and/or graphics processing units (GPU). 

•The distributed memory component is the networking of multiple SMP/GPU 
machines, which know only about their own memory - not the memory on 
another machine. Therefore, network communications are required to move 
data from one SMP/GPU to another. 

•Current trends seem to indicate that this type of memory architecture will 
continue to prevail and increase at the high end of computing for the future. 

 



Parallel Programming Models 

Overview 

 

There are several parallel programming models in common use: 

– Shared Memory  

– Threads Model 

– Distributed Memory / Message Passing 

– Hybrid 

– Single Program Multiple Data (SPMD) 

– Multiple Program Multiple Data (MPMD) 

 



Parallel Programming Models 

Shared Memory 

 

•In this programming model, tasks share a common address space, which 
they read and write to asynchronously. 

•Various mechanisms such as locks / semaphores may be used to control 
access to the shared memory. 

•The notion of data "ownership" is lacking, so there is no need to specify 
explicitly the communication of data between tasks. Program development 
can often be simplified. 

 

Implementations: 

•Native compilers and/or hardware translate user program variables into 
memory addresses, which are global.  

 



Parallel Programming Models 
Threads model 

•This programming model is a type of shared memory programming. 

•A single process can have multiple, concurrent execution paths. 

– The main program a.out is scheduled to run by the native operating 
system. a.out loads and acquires all of the necessary system and user 
resources to run. 

– a.out performs some serial work, and then creates a number of tasks 
(threads) that can be scheduled and run by the operating system 
concurrently. 

– Each thread has local data, but also, shares the entire resources 
of a.out: threads communicate with each other through global 
memory (updating address locations). This requires synchronization 
constructs to ensure that more than one thread is not updating the 
same global address at any time. 

Implementations: POSIX Threads and OpenMP. 

 



Parallel Programming Models 

Distributed Memory / Message Passing Model 

 

•This model demonstrates the following characteristics: 

– A set of tasks that use their own local memory during computation. 
Multiple tasks can reside on the same physical machine and/or across 
an arbitrary number of machines. 

– Tasks exchange data through communications by sending and 
receiving messages. 

– Data transfer usually requires cooperative operations to be performed 
by each process. For example, a send operation must have a matching 
receive operation. 

 

Implementations: MPI (Message Passing Interface) library 

 



Parallel Programming Models 
Hybrid Model 

•A hybrid model combines more than one of the previously described 
programming models. 

•Currently, a common example of a hybrid model is the combination of the 
message passing model (MPI) with the threads model (OpenMP). 

– Threads perform computationally intensive kernels using local, on-
node data 

– Communications between processes on different nodes occurs over 
the network using MPI 

•Another similar and increasingly popular example of a hybrid model is using 
MPI with GPU (Graphics Processing Unit) programming. 

– GPUs perform computationally intensive kernels using local, on-node 
data 

– Communications between processes on different nodes occurs over 
the network using MPI 

 



Parallel Programming Models 

 Single Program Multiple Data (SPMD) 

 

•SPMD is actually a "high level" programming model that can be built upon 
any combination of the previously mentioned parallel programming models. 

•SINGLE PROGRAM: All tasks execute their copy of the same program 
simultaneously. This program can be threads, message passing or hybrid. 

•MULTIPLE DATA: All tasks may use different data 

•SPMD programs usually have the necessary logic to allow different tasks to 
conditionally execute only those parts of the program they are designed to 
execute. That is, tasks do not necessarily have to execute the entire program - 
perhaps only a portion of it. 

•The SPMD model, using message passing or hybrid programming, is probably 
the most commonly used parallel programming model for multi-node 
clusters. 

 



Parallel Programming Models 

 Multiple Program Multiple Data (MPMD) 

 

• Like SPMD, MPMD is actually a "high level" programming model that can 
be built upon any combination of the previously mentioned parallel 
programming models. 

• MULTIPLE PROGRAM: Tasks may execute different programs 
simultaneously. The programs can be threads, message passing or hybrid. 

• MULTIPLE DATA: All tasks may use different data 

• MPMD applications are not as common as SPMD applications, but may be 
better suited for certain types of problems, particularly those that use an 
explicit domain decomposition or functional decomposition. 

 



Designing Parallel Program 
The first step in developing parallel software is to first understand the 
problem that you wish to solve in parallel.  
 

Before spending time in an attempt to develop a parallel solution for a 
problem, determine whether or not the problem is one that can actually be 
parallelized. 
 

•Identify the program's hotspots 

The majority of scientific and technical programs usually accomplish most 
of their work in a few places: profilers and performance analysis tools can 
help here. Focus on parallelizing the hotspots and ignore those sections of 
the program that account for little CPU usage. 

•Identify bottlenecks in the program 

For example, I/O is usually something that slows a program down. 

May be possible to restructure the program or use a different algorithm 
to reduce or eliminate unnecessary slow areas 

 



Designing Parallel Program 

Overview 

 

In order to design and develop a parallel program, we have to pay attention at 
several aspects: 

 

– Partitioning 

– Communications 

– Synchronization 

– Data Dependencies 

– Load Balancing 

– Granularity 

– I/O 

 



Designing Parallel Program 
Partitioning 

•One of the first steps in designing a parallel program is to break the problem 
into discrete "chunks" of work that can be distributed to multiple tasks. This is 
known as decomposition or partitioning. 

•There are two basic ways to partition computational work among parallel 
tasks: domain decomposition and functional decomposition. 

 

Domain Decomposition: 

•In this type of partitioning, the data associated with a problem is 
decomposed. Each parallel task then works on a portion of of the data. 

Functional Decomposition: 

•In this approach, the focus is on the computation that is to be performed 
rather than on the data manipulated by the computation. The problem is 
decomposed according to the work that must be done. Each task then 
performs a portion of the overall work. 



Designing Parallel Program 

Communications 

The need for communications between tasks depends upon your problem: 

 

•You DON'T need communications 

– Some types of problems can be decomposed and executed in parallel 
with virtually no need for tasks to share data: these types of problems 
are often called embarrassingly parallel. Very little inter-task 
communication is required. 

 

•You DO need communications 

– Most parallel applications are not quite so simple, and do require tasks 
to share data with each other. Changes to neighboring data has a 
direct effect on that task's data. 

 



Designing Parallel Program 
Communications 

There are a number of important factors to consider when designing your 
program's inter-task communications: 

 

•Cost of communications 

– Inter-task communication virtually always implies overhead. 

– Machine cycles and resources that could be used for computation are 
instead used to package and transmit data. 

– Communications frequently require some type of synchronization 
between tasks, which can result in tasks spending time "waiting" 
instead of doing work. 

– Competing communication traffic can saturate the available network 
bandwidth, further aggravating performance problems. 



Designing Parallel Program 

Communications 

 

•Latency vs. Bandwidth 

–latency is the time it takes to send a minimal (0 byte) message from 
point A to point B. Commonly expressed as microseconds. 

–bandwidth is the amount of data that can be communicated per unit of 
time. Commonly expressed as megabytes/sec or gigabytes/sec. 

–Sending many small messages can cause latency to dominate 
communication overheads. Often it is more efficient to package small 
messages into a larger message, thus increasing the effective 
communications bandwidth. 

 



Designing Parallel Program 

Communications 
 

•Synchronous vs. asynchronous communications 

– Synchronous communications require some type of "handshaking" 
between tasks that are sharing data. This can be explicitly structured 
in code by the programmer, or it may happen at a lower level 
unknown to the programmer. 

– Synchronous communications are often referred to as blocking 
communications since other work must wait until the communications 
have completed. 

– Asynchronous communications allow tasks to transfer data 
independently from one another. For example, task 1 can prepare and 
send a message to task 2, and then immediately begin doing other 
work. When task 2 actually receives the data doesn't matter. 

– Asynchronous communications are often referred to as non-blocking 
communications since other work can be done while the 
communications are taking place. 

 



Designing Parallel Program 

Communications 

 

•Scope of communications 

– Point-to-point: involves two tasks with one task acting as the 
sender/producer of data, and the other acting as the 
receiver/consumer. 

– Collective: involves data sharing between more than two tasks, which 
are often specified as being members in a common group, or 
collective. 

 

Both of the two scopings described can be implemented synchronously or 
asynchronously. 

 



Designing Parallel Program 

Synchronization 

 

•Barrier 

– Usually implies that all tasks are involved: each task performs its work 
until it reaches the barrier. It then stops, or "blocks". When the last 
task reaches the barrier, all tasks are synchronized. 

•Lock / semaphore 

– Can involve any number of tasks: typically used to serialize (protect) 
access to global data or a section of code. Only one task at a time may 
use (own) the lock / semaphore / flag. 

– The first task to acquire the lock "sets" it. This task can then safely 
(serially) access the protected data or code. Other tasks can attempt 
to acquire the lock but must wait until the task that owns the lock 
releases it. Can be blocking or non-blocking. 

•Synchronous communication operations 

 



Designing Parallel Program 

Data Dependencies 

 

 Definition: 

•A dependence exists between program statements when the order of 
statement execution affects the results of the program. 

•A data dependence results from multiple use of the same location(s) in 
storage by different tasks. 

•Dependencies are important to parallel programming because they are one 
of the primary inhibitors to parallelism. 

How to Handle Data Dependencies: 

•Distributed memory architectures: communicate required data at 
synchronization points. 

•Shared memory architectures: synchronize read/write operations       
between tasks. 

 



Designing Parallel Program 
Load Balancing 

 

•Load balancing refers to the practice of distributing work among tasks so 
that all tasks are kept busy all of the time.  

•Load balancing is important to parallel programs for performance reasons. 
For example, if all tasks are subject to a barrier synchronization point, the 
slowest task will determine the overall performance. 

How to Achieve Load Balance: 

•Equally partition the work each task receives 

– For array/matrix operations where each task performs similar work, 
evenly distribute the data set among the tasks. 

– For loop iterations where the work done in each iteration is similar, 
evenly distribute the iterations across the tasks. 

•Use dynamic work assignment 

– It may become necessary to design an algorithm which detects and 
handles load imbalances as they occur dynamically within the code. 

 



Designing Parallel Program 
Granularity 

 

In parallel computing, granularity is a qualitative measure of the ratio of 
computation to communication. 

Periods of computation are typically separated from periods of 
communication by synchronization events. 
 

Fine-grain Parallelism: 

•Relatively small amounts of computational work are done between 
communication events: if granularity is too fine it is possible that the 
overhead required for communications and synchronization between tasks 
takes longer than the computation. 

Coarse-grain Parallelism: 

•Relatively large amounts of computational work are done between 
communication/synchronization events but it’s harder to load balance 
efficiently 

 



Designing Parallel Program 

I/O 
 

•I/O operations are generally regarded as inhibitors to parallelism 

•Parallel I/O systems may be immature or not available for all platforms 

•In an environment where all tasks see the same file space, write operations can result 
in file overwriting 

•Read operations can be affected by the file server's ability to handle multiple read 
requests at the same time 

A few advices: 

– Reduce overall I/O as much as possible 

– Writing large chunks of data rather than small packets is usually significantly 
more efficient. 

– Confine I/O to specific serial portions of the job, and then use parallel 
communications to distribute data to parallel tasks.  

– Use local, on-node file space for I/O if possible. For example, each node may 
have /tmp filespace which can used. This is usually much more efficient than 
performing I/O over the network to one's home directory. 

 



Parallel programs 

 

Generally speaking a program parallelisation implies a subdivision of the 
problem model.  

After subdivision the computing tasks can be distributed among more 
processes. 

 

Two main approaches may be distinguished: 

 

• Thread level parallelism 

• Data level parallelism 

 



Task parallelism 

Thread (or task) parallelism is based on parting the operations of the 
algorithm. 

 

If an algorithm is implemented with series of independent operations these 
can be spread throughout the processors thus realizing program 
parallelisation. 

 begin 

end 

task 1 

task 2 

task 3 

task 4 

cpu 

1 

cpu 

2 

cpu 

3 

cpu 

4 



Data parallelism 

Data parallelism means spreading data to be computed through the 
processors. 

 

The processors execute merely the same operations, but on diverse data sets. 
This often means distribution of array elements across the computing units. 

 begin 

end 

task 

cpu 

1 

cpu 

2 

cpu 

3 

cpu 

4 

i<4? 

data 
array[4] yes 

no 



Parallel, concurrent, distributed 

What is the difference between parallel, concurrent and distributed 
programming? 

A program is said to be concurrent if  multiple threads are generated during 
execution. 

A parallel program execution is carried on by multiple, tightly cooperating 
threads. 

A program is distributed when indipendent processes do cooperate to 
complete execution. 

Anyhow there are not unique definitions and authors may give different 
versions. The definitions herein cited are those held by P. Pacheco, “An 
introduction to parallel programming”. 

 



Parallel, concurrent, distributed 

Based on the preceding definitions, parallel and distributed programs are 
concurrent programs, because multiple independent threads are working 
together to complete computation.  

 

Often a program is said to be parallel if it is executed on computing units that 
share the same memory or are elsewhere connected by a high speed  
network and usually are very closed together. 

 

Distributed programs instead are executed on processors physically 
distributed in a (wide) geographical area and connected by a (not so fast) 
network. Program processes are therefore considered rather independent 
each other. 



Processes, threads and multitasking 

Operating systems are sets of programs that manage software and hardware 
resources in a computer. Operating systems control the usage of processor 
time, mass storage, I/O devices and other resources. 

 

When a program execution is started, the operating system generates one or 
more processes. These are instances of the computer program and contain: 

• Executable machine code 

• A memory area, often divided in stack, heap and other parts 

• A list of computer resources allocated to enable program execution 

• Security data to access hardware and software resources 

• Informations on the state of the process, i.e. executing, waiting for a 
resource availability, memory allocation and so on 

 



Processes, threads and multitasking 

If the operating system is able to manage the execution of multiple processes 
at one time, it is said to be multitasking. On high performance parallel 
computers multi-tasking is usually of the pre-emptive type, i.e. slices of CPU 
time are dedicated in turn to each process, unless enough multiple 
computing units are available. 

 

This means that parallel programs can be executed by concurrent processes 
and the operating system is able to manage their requests. If a computing 
resource is temporarily unavailable, the requiring process is halted. Anyhow 
program execution may still be carried on because time slices are granted to 
the processes that have the availability of the resource. 

 

Parallel programs launched on systems where processors share a global 
memory are often executed as one process containing multiple threads, 
that share the computing resources of the process including process 
memory and devices. 

 



Process interactions 

Process interactions may be classified as: 

 

• Cooperation 

• Competition 

• Interference 

• Mutual exclusion 

• Deadlock 

 



Cooperation 

 

This kind of interaction is predictable and desirable. Cooperating 
processes exchange short signals or heavier data transfers. 

 

Process interaction leads to synchronisation and hence to a 
communication if data are transferred. 

 



Competition 

This kind of interaction is undesirable but nonetheless predictable and 
unavoidable. It may happen when more processes need to access a 
common resource that can not be shared (as an example updating a unique 
counter). Competition may be managed with so called critical sections. 

     

 

Also contending processes exchange signals and synchronize but in a way 
different from cooperation. 

     

 

We can distinguish direct or explicit synchronisation (coming from 
cooperation) from indirect or implicit synchronisation (caused by 
competition). 

 



Interference 

Interference is an unpredictable and undesirable kind of 
interaction usually arising from errors in developing a parallel 
program. Errors could come from interactions not required by 
the implemented algorithm or from interactions not properly 
handled. 

This kind of interaction may show up or not depending by 
process execution flowing. 

 



Mutual exclusion 

Whenever more processes should not access concurrently a 
computing resource the problem of realising mutual exclusion 
has to be managed. This may come up from accessing devices 
such as writing a disk file or from updating a common memory 
space.  

 

This kind of problem is often solved using critical sections. 

 

Critical sections do ensure that processes can execute the 
instructions contained therein but only one at a time. 

 



Deadlock 

This undesired situation is always due to programming errors 
and arises when one or more processes are compelled to wait 
for something that will never happen.  

 

Processes often enter a deadlock state if they encounter a 
synchronising point while some other process follow a different 
executing stream. As an example a program could contain two 
distinct barriers but processes can reach both of them 
concurrently. 

 



Parallel program performance 

The goal of program parallelisation is to reduce execution elapsed time. This 
is accomplished by distributing execution tasks across the independent 
computing units. To measure the goodness of the parallelisation effort the 
time spent in execution by the sequential version of the program (i.e. the 
program before parallelisation optimisation) must be  compared to the time 
spent by the parallelised version of the program. 

 

Let us call Tserial the execution elapsed time of the sequential version of a 
program and Tparallel the execution elapsed time of the parallel version. In 
an ideal case if we run the program with p computing units (or cores): 

 

 

If that is true it is said the (parallel) program has a linear speed-up. 

 

p

T
T serial

parallel 



Speed-up and efficiency 

In a real program a linear speed-up is difficult to gain. It has to be considered 
that the execution flow of the sequential version of the program does not 
encounter troubles that the parallel version does.  

Overheads in a parallel program are introduced by simply dividing the 
program execution stream. Moreover there is often need of synchronisation 
and data exchange; furthermore critical sections have to be implemented.  

     

Speed-up is defined as: 

 

 

 

 

The program has a linear speed-up if S=p, where p is the number of cores 
used in executing the program. 

 

parallel

serial

T

T
S 



Speed-up and efficiency 
It could be difficult to get a linear speed-up because of the overheads due to 

synchronisations, communications and often because of an unbalanced 
distribution of the computing tasks.  

This leads to decreasing speed-up while growing the number of cores, 
because each core brings added overhead. 

 

Efficiency is said to be the ratio between speedup and number of cores: 

 

 

 

 

 

 

Usually more cores are added, less efficiency is measured. 
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Overhead 

Overheads are a significant issue in parallel programs and 
strongly affect program efficiency. 

 

If overhead delays have to be considered elapsed execution 
times could be calculated according to: 

 

overhead
serial

parallel T
p

T
T 



Amdahl’s law 

If we can analyze a program and measure the portion of code that must be 
executed sequentially and the part of code that can be distributed across the 
cores we are able to forsee the program speed-up. 

 

As an example, if it would be possible to parallelize 90% of a program, the 
remaining 10% of code runs seq uentially; then according to Amdhal law: 

Tparallel = (0.9xTserial)/p + 0.1xTserial = 18/p + 2 

where p = number of available cores 

 

If Tserial = 20 sec and p = 6,  then speed-up will be: S = 20/(18/p + 2) = 4. 

 

The time spent in the parallel portion of code decreases as the number of 
cores increases. Eventually this time tends to zero, but the time spent in the 
sequential part of the code still remains and strongly limits the program 

speed-up. 

 



Amdahl’s law 

As a consequence Amdahl's law tells that speed-up will always be less than 
1/r, where r is the sequential portion of the program. 

 

But let us not worry too much! 

 

In real parallel computing world we have to take account of many facets and 
one of the most important is problem dimension. If we consider this we can 
be interested in Gustafson's (or Gustafson-Barsis') law: 

 

SG
p = p – a (p-1) 

 

This formula can be applied to problems for which execution time can be kept 
constant increasing parallel cores as the problem dimensions increase. This 
actually applies to many real cases. 

 



Problem dimensions 

Problem dimension is important because size of data to be computed 
increases the processors computing time. It is possible to lower global 
elapsed time by distributing the work across more processors.  

 

But overheads due to parallelisation stuff will not grow as much, hence 
speed-up is likely to increase. 

 

Usually, as the dimension of the problem grows, speed-up will grow as well, if 
enough parallel processors are added. 

 



Speed-up and problem dimension 



Efficiency and problem dimension 



Scalability 

In conclusion, there are basically two ways of evaluating 
scalability of a program.  

 

If global problem dimension is fixed and efficiency does not 
decrease while increasing the number of cores, then it is said 
that the program is strongly scalable. 

 

If the efficiency does not decrease when problem dimension per 
processor (i.e. global dimension has to be augmented as the 
number of processors increases) is kept almost unchanged, then 
the program is said to be weakly scalable. 

 



Example: ANSYS Fluent benchmarks 

L3 
linear scalability till 128 cpus 

linear scalability till 16 cpus Medium 

Large 


