
Using the IBM iDataPlex (PLX)

ARPA - Piemonte

02-03 May 2013

m.cestari@cineca.it

Goals

You will learn:

● basic concepts of the system architecture that directly affects your
work

● how to explore and interact with the software installed on the system

● how to compile a parallel code and how to fix basic issues

● how to launch a simulation exploiting the computing resources
provided by the PLX system

2

Contents

3

A first step
 login
 file transfer
 system overview

Introduction to the environment

 accounting
 disk systems
 module system

Programming environment

 compilation
 compiling/linking issues

Production environment

 job script
 PBS commands

For further info...
 useful links and documentation

PLX: get the access credentials

● Please fill out the form on

https://userdb.hpc.cineca.it/user/register

● You'll receive userdb credentials: Then
➔ Click on “HPC Access” and follow the instructions
➔You'll be asked to upload an image of a valid ID document
➔ Ask your PI or send an email to superc@cineca.it to be included
on ARPA_prod project

● When everything is done an automatic procedure sends you (via 2
separate emails) the username/password to access PLX

4

https://userdb.hpc.cineca.it/user/register
mailto:superc@cineca.it

PLX: how to log in

5

• Establish a ssh connection

ssh <username>@login.plx.cineca.it

• Remarks:

o ssh available on all linux distros
o Putty (free) or Tectia ssh on Windows
o secure shell plugin for Google Chrome!
o important messages can be found in the message of the day

Check the user guide! http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide-0

PLX: file transfer

6

• sftp / scp (always available if sshd is running)

$ sftp -r <my_dir> <user>@login.plx.cineca.it:/path/to/
$ scp -r <my_dir> <user>@login.plx.cineca.it:/path/to/

• rsync: allows incremental transfer

$ rsync -avzr --progress <my_dir> <user>@login.plx.cineca.it:

• gridftp: allows for stream transfer and much more
(~10x transfer! - available soon)

$ globus-url-copy -vb -r -p 16 -sync -sync-level 2
file:/path/to gsiftp://mcestari@gftp-plx.cineca.it:2812/path/to/

Check the user guide! www.hpc.cineca.it/content/transferdata

mailto://mcestari@gftp-plx.cineca.it

7

PLX system performance
Peak performance: 32 Tflops (3288 cores a
2.40GHz)
Peak performance: 565 TFlops SP or 283
TFlops DP (548 Nvidia M2070)

Model: IBM iDataPlex DX360M3

Architecture: Linux Infiniband Cluster

Processor Type:
• Intel Xeon (Esa-Core Westmere) E5645 2.4 GHz
(Compute)
• Intel Xeon (Quad-Core Nehalem) E5530 2.66 GHz
(Service and Login)

Number of nodes: 274 Compute + 1 Login + 1 Service +
8 Fat + 6 RVN + 8 Storage + 2 Management

Number of cores: 3288 (Compute)

Number of GPUs: 548 nVIDIA Tesla M2070 + 20
nVIDIA Tesla M2070Q

RAM: 14 TB (48 GB/Compute node + 128GB/Fat node)

PLX characteristics

8

Infiniband connection

Compute nodes

Xeon E5645 – cache hierarchy

9

To find out more info on the cache hierarchy

$ grep . /sys/devices/system/cpu/cpu0/cache/index*/*

Remark: who uses PLX?

● 7 nodes are reserved for ARPA users: none of the other users of the
system can launch jobs on those nodes

● PLX is a resource shared between different type users: academic,
industrial, and special agreement (e.g. ARPA-Piemonte) users

➔ Please be responsible when you use it: if you crash the login node all the
users will be affected

10

Work Environment

$HOME:
● Permanent, backed-up,and local to PLX.
● Quota = 4GB.
● For source code or important input files.

$CINECA_DATA:
● Permanent, no backup, and shared with other CINECA systems. Mounted only

on login nodes (i.e. not visible in normal batch jobs)
● Quota=100Gb can be extended on request.
● Intended as a storage area and file transfer between PLX and other CINECA

systems.

$CINECA_SCRATCH:
● Large, parallel filesystem (GPFS).
● Temporary (files older than 30 days automatically deleted), no backup.
● No quota. Run your simulations and calculations here.

11

Disks and filesystems
Standard CINECA environment

please use “cindata” command to get info on your disk occupation

12

IBM-FERMI

Accounting: saldo

13

[mcestari@node342] (~)

$ saldo -b

--

account start end total localCluster totConsumed totConsumed

 (local h) Consumed(local h) (local h) %

--

try11_test 20110301 20111201 10000 0 2 0.0

cin_staff 20110323 20200323 200000000 64581 6689593 3.3

ArpaP_prod 20130130 20131101 1500000 0 0 0.0

Accounting philosophy is based on the resources requested for the time of the
batch job:

cost = no. of cores requested x job duration

In the CINECA system it is possible to have more than 1 budget (“account”)
from which you can use time. The accounts available to your UNIX username
can be found from the saldo command.

module, my best friend

14

● all the optional software on the system is made available
through the "module" system

➔ provides a way to rationalize software and its env variables

● modules are divided in 3 profiles
➔ profile/base (stable and tested modules)
➔ profile/front-end (contains all the base modules plus front-end

libs and apps)
➔ profile/advanced (software not yet tested or not well optimized)

● each profile is divided in 4 categories
➔ compilers (IBM-xl, GNU)
➔ libraries (e.g. LAPACK, BLAS, FFTW, ...)
➔ tools (e.g. Scalasca, GNU make, VNC, ...)
➔ applications (software for chemistry, physics, ...)

Modules

● CINECA’s work environment is organized in modules, a set of
installed libs, tools and applications available for all users.

● “loading” a module means that a series of (useful) shell
environment variables wil be set

● E.g. after a module is loaded, an environment variable of the
form “<MODULENAME>_HOME” is set

Module commands

> module available (or just “> module av”)
Shows the full list of the modules available in the profile you’re into, divided
by: environment, libraries, compilers, tools, applications

 > module (un)load <module_name>

 (Un)loads a specific module

> module show <module_name>
Shows the environment variables set by a specific module

> module help <module_name>
Gets all informations about how to use a specific module

> module purge
Gets rid of all the loaded modules

Compiling on PLX

On PLX you can choose between three different compiler families: gnu,
intel and pgi

You can take a look at the versions available with “module av” and then
load the module you want. Defaults are: gnu 4.1.2, intel 11.1, pgi 11.1

module load intel # loads default intel compilers suite

module load intel/co-2011.6.233--binary # loads specific compilers suite

GNU INTEL PGI

Fortran gfortran ifort pgf77

C gcc icc pgcc

C++ g++ icpc pgCC

Get a list of the

compilers flags with

the command man

Parallel compiling on PLX

Two families of MPI libraries are available: openmpi and intelmpi.
They provide also the parallel compiler wrappers

There are different versions of openmpi, depending on which compiler
has been used for creating them. Default is openmpi/1.4.4--gnu--4.5.2

module load openmpi # loads default openmpi compilers suite

module load openmpi/1.4.5--intel--11.1--binary # loads specific
compilers suite
Warning: openmpi needs to be loaded after the corresponding basic compiler
suite. You can load both compilers at the same time with “autoload”

If another type of compiler was previously loaded, you may get a

“conflict error”. Unload the previous module with “module unload”

OPENMPI
INTELMPI

Fortran mpif90

C mpicc

C++ mpiCC

Compiler flags are the same of the basic compiler (since they are
basically MPI wrappers of those compilers)

OpenMP is provided with following compiler flags:
gnu: -fopenmp
intel : -openmp
pgi: -mp

Parallel compiling on PLX

Undefined references
● Many compilation errors are due to wrong or incomplete library linking

(undefined reference): don't panic!

● Remember to load your modules (module avail, module load):

module load library/version

(fftw/3.2.2—gnu--4.5.2, lapack/3.3.1—intel--co-2011.6.233--binary, ecc.)

● all library paths are in the form $LIBRARY_LIB ($FFTW_LIB, $LAPACK_LIB
ecc.) ; include paths are in the form $LIBRARY_INC

$ module load hdf5
$ ls $HDF5_LIB
libhdf5.a libhdf5_cpp.la libhdf5_fortran.la libhdf5_hl_cpp.a
libhdf5hl_fortran.a libhdf5_hl.la libhdf5.settings libhdf5_cpp.a
libhdf5_fortran.a libhdf5_hl.a libhdf5_hl_cpp.la libhdf5hl_fortran.la
libhdf5.la

Undefined references

Use the command "nm" to find the reference and the right library to link:

$ for i in `ls $HDF5_LIB/*.a` ; do echo $i ; nm $i | grep H5AC_dxpl_id ; done

/cineca/prod/libraries/hdf5/1.8.7_ser/intel--co-2011.6.233--binary/lib/libhdf5.a
 U H5AC_dxpl_id
 U H5AC_dxpl_id
000000000000009c D H5AC_dxpl_id

 2 ways to link a library:

-L$LIBRARY_LIB -lname --- or --- $LIBRARY_LIB/libname.a

1) mpicc_r -I$HDF5_INC input.c -L$HDF5_LIB -lhdf5 -L$SZIP_LIB -lsz
-L$ZLIB_LIB -lz

2) mpicc_r -I$HDF5_INC input.c $HDF5_LIB/libhdf5.a $SZiP_LIB/libsz.a
$ZLIB_LIB/bibz.a

On PLX you can choose between dynamic and static linking (dynamic
is the default).

● Static linking means that the library references are resolved at
compile time, so the necessary functions and variables are already
contained in the executable produced. It means a bigger executable
but no need for linking the library paths at runtime.

●Dynamic linking means that the library references are resolved at
run time, so the executable searches for them in the paths provided. It
means a lighter executable and no need to recompile the program after
every library update, but environment variables have to be defined at
runtime (i.e. LD_LIBRARY_PATH)

Dynamic linking means that the library references are resolved at run time, so the
executable searches for them in the paths provided. It means a lighter executable and
no need to recompile the program after every library update, but a lot of environment
variables to define at runtime.

To enable static linking: -static (gnu), -intel-static (intel), -Bstatic (pgi)

Static/Dynamic Linking

● Now that we have our executable, it’s time to learn how to
prepare a job for its execution

● PLX uses PBS scheduler.

● The job script scheme is:

 #!/bin/bash
 #PBS keywords

 variables environment

 execution line

Launching jobs

PBS keywords

#PBS –N jobname # name of the job
#PBS -o job.out # output file
#PBS -e job.err # error file
#PBS -l select=1:ncpus=12:mpiprocs=12:mem=47gb # resources
#PBS -l walltime=1:00:00 # hh:mm:ss, max 48h for ARPA-P
#PBS -q privarpap # chosen queue
#PBS -A <my_account> # name of the account

select = number of chunk requested

ncpus = number of cpus per chunk requested

mpiprocs = number of mpi tasks per chunk

mem = RAM memory per chunk

#PBS -A ArpaP_prod # your “account” name

#PBS -q privarpap # special queue reserved for you

privarpap is a particular queue composed by 8 compute nodes
reserved for ARPA Piemonte users

ArpaP_prod is the cpu-hours budget that you need to set

PBS Keywords specific for ARPA

“privarpap” queue is a particular queue composed by 8 compute nodes reserved for ARPA
Piemonte users

ArpaP_prod is the

Environment setup and
execution line

The execution line starts with mpirun: Given: ./myexe arg_1 arg_2

mpirun –n 24 ./myexe arg_1 arg_2
–n is the number of cores you want to use
arg_1 arg_2 are the normal arguments of myexe

In order to use mpirun, openmpi (or intelmpi) has to be loaded. Also, if
you linked dynamically, you have to remember to load every library
module you need (automatically sets the LD_LIBRARY_PATH variable).

The environment setting usually starts with “cd $PBS_O_WORKDIR”.
That’s because by default you are launching on your home space the
executable may not be found.
$PBS_O_WORKDIR points to the directory from where you’re submitting
the job .

In order to use mpirun, openmpi (or IntelMPI) has to be loaded. Also, if you linked
dynamically, you have to remember to load every library module you need.

#!/bin/bash
#PBS -l walltime=1:00:00
#PBS -l select=1:ncpus=12:mpiprocs=12:mem=46gb
#PBS -o job.out
#PBS -e job.err
#PBS -q privarpap
#PBS -A ArpaP_prod

#PBS -m mail_events --> specify email notification

 (a=aborted,b=begin,e=end,n=no_mail)

#PBS -M user@email.com

cd $PBS_O_WORKDIR
module load autoload openmpi
module load somelibrary

mpirun ./myprogram < myinput

PLX job script example

PBS commands

qsub
 qsub <job_script>
Your job will be submitted to the PBS scheduler and executed
when there will be nodes available (according to your priority and the
queue you requested)

 qstat
 qstat
 Shows the list of all your scheduled jobs, along with their status (idle,

running, closing, …) Also, shows you the job id required for other qstat
options

qstat
 qstat -f <job_id>
Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about its
estimated start time or, if you made an error on the job script, you will
learn that the job won’t ever start

qdel

 qdel <job_id>

 Removes the job from the scheduled jobs by killing it

PBS commands

ARPA queue
$ qstat -Qf privarpap

Queue: privarpap

 queue_type = Execution

 total_jobs = 0

 state_count = Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0 Begun:0

 acl_user_enable = False

 resources_max.ncpus = 84

 resources_max.ngpus = 14

 resources_max.Qlist = arpap

 resources_max.walltime = 48:00:00

 resources_min.Qlist = arpap

 resources_default.ncpus = 1

 resources_default.ngpus = 0

 resources_default.place = free:shared

 resources_default.Qlist = arpap

 acl_group_enable = True

 acl_groups = -,arpap_prod

 default_chunk.Qlist = arpap

 enabled = True

 started = True

Documentation

Check out the User Guides on our website www.hpc.cineca.it

PLX:

http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide-0

http://www.hpc.cineca.it/content/batch-scheduler-pbs-0

Advanced topic

http://www.hpc.cineca.it/sites/default/files/PBSProUserGuide10.0.pdf

http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide-0
http://www.hpc.cineca.it/content/batch-scheduler-pbs-0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

