
BOLOGNA BUSINESS SCHOOL
Alma Mater Studiorum Università di Bologna

Introduction to PICO
Parallel & Production Enviroment

Mirko Cestari – m.cestari@cineca.it
Alessandro Marani – a.marani@cineca.it

Domenico Guida – d.guida@cineca.it
Nicola Spallanzani – n.spallanzani@cineca.it

SuperComputing Applications and Innovation Department

2

OUTLINE
• A first step:

– System overview
– Login
– Work environment

• Production environment
– Our first job!!
– Creating a job script
– Accounting and queue system
– PBS commands

• Programming environment
– Module system
– Serial and parallel compilation
– Interactive session

• For further info...
– Useful links and documentation

3

PICO CHARACTERISTICS
Computing nodes
Processor: Xeon E5 2670 v2 (2.5 Ghz)
Number of processors (cores): 1320
Number of nodes: 66 (20 cores per node)
RAM: 128 GB/node

Visualization nodes
Processor: Xeon E5 2670 v2 (2.5 Ghz)
Number of nodes: 2 (20 cores per node)
GPU: Nvidia K40 (2 per node)
RAM: 128 GB/node

“Big mem” nodes
Processor: Xeon E5 2650 v2 (2.6 Ghz)
Number of nodes: 2 (16 cores per node)
GPU: Nvidia K20 (for 1 node)
RAM: 512 GB/node

“Big insight” nodes
Processor: Xeon E5 2650 v2 (2.6 Ghz)
Numbero of nodes: 4 (16 cores per node)
Local disk space: 32 TB
RAM: 64 GB/node

4

HOW TO LOG IN

 Establish a ssh connection
ssh <username>@login.pico.cineca.it

Remarks:
– ssh available on all linux distros
– Putty (free) or Tectia ssh on Windows
– secure shell plugin for Google Chrome!
– login nodes are swapped to keep the load balanced
– important messages can be found in the message of the day

Check the user guide!
 https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+PICO+UserGuide

5

WORK ENVIRONMENT
$HOME:

Permanent, backed-up, and local to PICO.

50 Gb of quota. For source code or important input files.

$CINECA_SCRATCH:

Large, parallel filesystem (GPFS).

No quota. Run your simulations and calculations here.

A cleaning procedure automatically deletes every file untouched since 50 days

use the command cindata to get info on your disk occupation

https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.4%3A+Data+storage+and+FileSystem

$WORK:

Similar to $CINECA_SCRATCH, but the content is shared among all the users of the same account.

1 Tb of quota. Stick to $CINECA_SCRATCH for the school exercises!

https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.4:+Data+storage+and+FileSystem

6

OUTLINE
• A first step:

– System overview
– Login
– Work environment

• Production environment
– Our first job!!
– Creating a job script
– Accounting and queue system
– PBS commands

• Programming environment
– Module system
– Serial and parallel compilation
– Interactive session

• For further info...
– Useful links and documentation

7

LAUNCHING JOBS

As in every HPC cluster, PICO allows you to run your simulations by

submitting “jobs” to the compute nodes

Your job is then taken in consideration by a scheduler, that adds it to a

queuing line and allows its execution when the resources required are

available

The operative scheduler in PICO is PBS

8

PBS JOB SCRIPT SCHEME

The scheme of a PBS job script is as follows:

#!/bin/bash

#PBS keywords

variables environment

execution line

9

PBS JOB SCRIPT EXAMPLE

10

PBS KEYWORD ANALYSIS - 1
#PBS -N myname

Defines the name of your job

#PBS -o job.out

Specifies the file where the standard output is directed (default=jobname.o<jobID>)

#PBS -e job.err

Specifies the file where the standard error is directed (default=jobname.e<jobID>)

#PBS -m abe (optional)

Specifies e-mail notification. An e-mail will be sent to you when something happens to your job, according

to the keywords you specified (a=aborted, b=begin, e=end, n=no email)

#PBS -M user@email.com (optional)

Specifies the e-mail address for the keyword above

mailto:user@email.com

11

PBS KEYWORD ANALYSIS - 2
#PBS -l walltime=00:30:00

Specifies the maximum duration of the job. The maximum time allowed depends on the queue

used (more about this later)

#PBS -l select=1:ncpus=36:mpiprocs=18:mem=10GB

Specifies the resources needed for the simulation.

select – number of compute nodes (“chunks”)

ncpus – number of cpus per node (max. 36)

mpiprocs – number of MPI tasks per node (max=ncpus)

mem – memory allocated for each node (default=3.5 GB)

12

ACCOUNTING SYSTEM
#PBS -A <my_account>

Specifies the account that consumes the CPU hours allocated.

As an user, you have access to a limited number of CPU hours to spend. They are not
assigned to users, but to projects and are shared between the users who are working
on the same project (i.e. your research partners). Such projects are called accounts and
are a different concept from your username.

You can check the status of your account with the command “saldo -b”, which tells you

how many CPU hours you have already consumed for each account you’re assigned at

(a more detailed report is provided by “saldo -r”).

13

ACCOUNT FOR THE COURCE

The account provided for this course is
“train_cdan2017”

(you have to specify it on your job scripts).

It will expire two months after the end of the
school and is shared between all the students;

there are plenty of hours for everybody, but
don’t waste them!

#PBS -A train_cdan2017

15

PBS COMMANDS
After the job script is ready, all there is left to do is to submit it:

qsub
 qsub <job_script>
Your job will be submitted to the PBS scheduler and executed when there will
be nodes available (according to your priority and the queue you requested)

qstat -u
 qstat -u <username>
Shows the list of all your scheduled jobs, along with their status (idle, running,
closing, …) Also, shows you the job id required for other PBS commands.
Hint: add the flag “-w” for an extended vision and the full name of your jobid

16

PBS COMMANDS

qstat -f
 qstat -f <job_id>
Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about its
estimated start time or, if you made an error on the job script, you
will learn that the job won’t ever start

qdel

 qdel <job_id>

 Removes the job from the scheduled jobs by killing it

17

OUTLINE
• A first step:

– System overview
– Login
– Work environment

• Production environment
– Our first job!!
– Creating a job script
– Accounting and queue system
– PBS commands

• Programming environment
– Module system
– Serial and parallel compilation
– Interactive session

• For further info...
– Useful links and documentation

18

AN EXAMPLE OF A PARALLEL JOB

#!/bin/bash

#PBS -l walltime=1:00:00

#PBS -l select=2:ncpus=20:mpiprocs=10

#PBS -o job.out

#PBS -e job.err

#PBS -A <my_account>

cd $PBS_O_WORKDIR # points to the folder you are actually working into

module load autoload intelmpi

mpirun -np 20 ./myprogram

19

MODULE SYSTEM
• All the optional software on the system is made available through the

"module" system. It provides a way to rationalize software and its
environment variables.

• Modules are divided in several profiles:

•profile/base default - stable and tested compilers, libraries, tools

•profile/advanced libraries and tools compiled with different setups that
the default

•profile/chem (phys, bioinf, astro,...) “domain” profiles with the application
softwares specific for each field of research

•profile/archive old or outdated versions of our module (we don't throw
away anything!)

• Each profile is divided in 4 categories

 compilers (GNU, intel, openmpi) tools (e.g. Scalasca, GNU make, VNC, ...)

 libraries (e.g. LAPACK, BLAS, FFTW, …) applications (software for chemistry, physics, ...)

20

MODULE SYSTEM
• CINECA’s work environment is organized in modules, a set of

installed libraries, tools and applications available for all users.

• “loading” a module means that a series of (useful) shell
environment variables will be set

• E.g. after a module is loaded, an environment variable of the
form “<MODULENAME>_HOME” is set

• For certain modules, a specific profile must be loaded before
(“module load profile/...”). Use the “modmap” command to
understand which module is in which profile (try “modmap -h”)

21

MODULE COMMANDS

COMMAND DESCRIPTION

module av list all the available modules

module load <module_name(s)> load module <module_name>

module list list currently loaded modules

module purge unload all the loaded modules

module unload <module_name> unload module <module_name>

module help <module_name> print out the help (hints)

module show <module_name> print the env. variables set when
loading the module

22

MODULE PREREQS AND CONFLICTS

Some modules need to be loaded after other modules they
depend from (e.g.: parallel compiler depends from basic
compiler). You can load both compilers at the same time

with “autoload”

You may also get a “conflict error” if you load a module not
suited for working together with other modules you already

loaded (e.g. different compilers). Unload the previous module
with “module unload”

23

COMPILING ON PICO

• On MARCONI you can choose between three different
compiler families: gnu, intel and pgi

• You can take a look at the versions available with “module
av” and then load the module you want.

module load intel # loads default intel compilers suite

module load intel/pe-xe-2017--binary # loads specific
compilers suite

GNU INTEL PGI

Fortran gfortran ifort pgf77

C gcc icc pgcc

C++ g++ icpc pgcc

Get a list of the
compilers flags with
the command man

24

PARALLEL COMPILING ON PICO

25

PARALLEL COMPILING ON PICO

OPENMPI/INTELMPI

Fortran90 mpif90/mpiifort

C mpicc/mpiicc

C++ mpiCC/mpiicpc

Compiler flags are the same of the basic compiler (since
they are basically MPI wrappers of those compilers)

OpenMP is provided with the following compiler flags:

gnu: -fopenmp

intel : -qopenmp

pgi: -mp

26

Let’s take a step back…

#PBS -l select=2:ncpus=20:mpiprocs=5

This example line means “allocate 2 nodes with 20 CPUs each, and 5 of them should

be considered as MPI tasks”

So a total of 40 CPUs will be available. 10 of them will be MPI tasks, the others will be

OpenMP threads (4 threads for each task).

In order to run a pure MPI job, ncpus must be equal to mpiprocs.

27

EXECUTION LINE IN JOB SCRIPT

mpirun -np 8 ./myprogram

Your parallel executable is launched on the compute nodes via the
command “mpirun”.
With the “-np” flag you can set the number of MPI tasks used for the
execution. The default is the maximum number allowed by the
resources requested.

WARNING:

In order to use mpirun, openmpi-intelmpi has to be loaded inside

the job script:

module load autoload intelmpi

Be sure to load the same version of the compiler that you used to
 compile your code!!

28

DEVELOPING IN COMPUTE NODES:
 INTERACTIVE SESSION

It may be easier to compile and develop directly in the compute nodes,

without recurring to a batch job.

For this purpose, you can launch an interactive job to enter inside a compute node by using PBS.

The node will be reserved to you as it was requested by a regular batch job

Basic interactive submission line:

qsub –I –l select=1 –A <account_name> -q <queue_name>

Other PBS keyword can be added to the line as well (walltime, resources,…)

Keep in mind that you are using computing nodes, and by consequence you are consuming

computing hours!

To exit from an interactive session, just type “exit”

29

OUTLINE
• A first step:

– System overview
– Login
– Work environment

• Production environment
– Our first job!!
– Creating a job script
– Accounting and queue system
– PBS commands

• Programming environment
– Module system
– Serial and parallel compilation
– Interactive session

• For further info...
– Useful links and documentation

30

Useful links and documentation

• Reference guide:
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+PICO+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.5.2%3A+Batch+Scheduler+PBS
https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.4%3A+Data+storage+and+FileSystem

• Stay tuned with the HPC news:
http://www.hpc.cineca.it/content/stay-tuned

• HPC CINECA User Support: mail to superc@cineca.it

• HPC Courses: corsi.hpc@cineca.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

