
CUDA Efficient Programming

www.cineca.it

f.ficarelli@cineca.it

AgendaAgenda

1. Overview and general concepts

2. Performance Metrics

3. Memory Optimizations3. Memory Optimizations

4. Execution Optimization

5. Tools Overview

www.cineca.itwww.cineca.it Federico FicarelliFederico Ficarelli

DifferentDifferent worldsworlds: : hosthost and and devicedevice

Host Device

Threading
resources

2 threads per core (SMT), 24/32
threads per node. The thread is the
atomic execution unit.

e.g.: 1536 (thd x sm) * 14 (sm) = 21504.
The Warp (32 thd) is the atomic
execution unit.

Threads «Heavy» entities, context switches
and resources management.

Extremely lightweight, managed
grouped into warps, fast context switch,
no resources management (staticallyno resources management (statically
allocated once).

Memory e.g.: 48 GB / 32 thd = 1.5 GB/thd,
300 cycles lat., 6.4 GB/s band
(DDR3), 3 caching levels with lots
of speculation logic.

e.g.: 6 GB / 21504 thd = 0.3 MB/thd, 600
cycles lat*, 144 GB/s band (GDDR5)*,
fake caches.

* coalesced

Maximum performance benefitMaximum performance benefit

� Focus on achieving high occupancy.

� Focus on how to exploit the SIMT model at its best.

� Deeply analyze your algorithm in order to find the hotspots
and embarassingly parallel-enabled portions.

i.e.: pay attention to the Amdahl’s law, the porting could

be very tough.

CapabilityCapability

The version tag that identifies:

� instructions and features supported by the board;

� coalescing rules;

� the board’s resources constraints;� the board’s resources constraints;

� througput of some instructions (hardware
implementation).

CapabilityCapability: : atomicsatomics

CapabilityCapability: : resourcesresources constraintsconstraints

CUDA APIsCUDA APIs
Runtime API Handles kernel mechanics (loading,

parameters setup, invocation, context

management, fatbin management).

Provides CUDA language extensions.

Driver API Low level, pure C99 interface (nvcc not
needed), explicit management of every
resource (context, kernel params, etcA)resource (context, kernel params, etcA)

The Driver API isn’t forward compatible.

Performance Performance metricsmetricsPerformance Performance metricsmetrics

www.cineca.itwww.cineca.it 99

Performance metricsPerformance metrics

� Wall time

� Theroetical vs achieved bandwidth

� Achievable vs achieved occupancy

� Memory conflicts� Memory conflicts

TimingTiming

� It’s allowed to use std timing facilities (host side).

� Beware of asynchronous calls! start = clock()
my_kernel<<< g, b, s >>>();
cudaThreadSynchronize();

end = clock();

� CUDA provides the Events facility.

� Needed to time single streams without loosing
concurrency.

BandwidthBandwidth

1. Get board’s theoretical bandwidth:

clock freq. (MHz)

transfer channel width (bits)

DDR

GeForce GTX 280

2. Get kernel’s effective bandwidth:
// __global__ device code, single precision data

if(threadIdx.x < 2048 && threadIdx.y < 2048) {

mat_a[threadIdx.x] [threadIdx.y] = mat_b[threadIdx.x] [threadIdx.y];

}

3. Measure kernel’s achieved bandwidth: use profiling tools!

Beware of cudaprof: throughput result is extrapolated and considers wasted
transaction data (uncoalesced) as good.

Memory Memory OptimizationsOptimizations

www.cineca.itwww.cineca.it 1313

Data TransfersData Transfers

� Host and Device have their own address space

� GPU boards are connected to host via PCIex bus

� Low bandwidth, extremely low latency

� Focus on how to minimize transfers and copybacks*.
* Try to find a good trade off!

Technology Peak Bandwidth

PCIex GEN2 (16x, full duplex) 8 GB/s (peak)

PCIex GEN3 (16x, full duplex) 16 GB/s (peak)

DDR3 (full duplex) 26 GB/s (single channel)

PagePage--locked memorylocked memory

•Pinned (or page-locked memory) is a main memory area that is not
pageable by the operating system;

•ensures faster transfers (the DMA engine can work without raising
interrupts);

•the only way to get closer to PCI peak bandwidth;

•allows CUDA asynchronous operations (including Zero Copy) to•allows CUDA asynchronous operations (including Zero Copy) to
work correctly.

// allocate page-locked memory

cudaMallocHost(&area, sizeof(double) * N);

// free page-locked memory

cudaFreeHost(area);

Warning: locked pages are a limited resource (much smaller than regular pages, ulimit -l)

// allocate regular memory

area = (double*) malloc(sizeof(double) * N);

// lock area pages (CUDA >= 4.0)

cudaHostRegister(area, sizeof(double) * N, cudaHostRegisterPortable);

// unlock area pages (CUDA >= 4.0)

cudaHostUnregister(area);

// free regular memory

cudaFreeHost(area);

Zero CopyZero Copy

� CUDA allows to map a page-locked host memory area to
device’s address space;

// allocate page-locked and mapped memory

cudaHostAlloc(&area, sizeof(double) * N, cudaHostAllocMapped);

// invoke retrieving device pointer for mapped area

� The only way to provide on-the-fly a kernel data larger
than device’s global memory.

� Very convenient for large data with sparse access pattern.

// invoke retrieving device pointer for mapped area

cudaHostGetDevicePointer(&dev_area, area, 0);

my_kernel<<< g, b >>>(dev_area);

// free page-locked and mapped memory

cudaFreeHost(area);

UnifiedUnified Virtual Virtual AddressingAddressing

CUDA 4.0 introduced one (virtual) address space for all CPU and
GPUs memory:

• automatically detects physical memory location from pointer value

• enables libraries to simplify their interfaces (e.g. cudaMemcpy)

Pre-UVA UVA

www.cineca.itwww.cineca.it 1717

Pre-UVA UVA

Each source-destination
permutation has its own option

Same interface

cudaMemcpyHostToHost

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

cudaMemcpyDefault

Pointers returned by cudaHostAlloc() can be used directly from
within kernels running on UVA enabled devices (i.e. there is no

need to obtain a device pointer via cudaHostGetDevicePointer())

MultiMulti--GPUsGPUs: P2P: P2P

cudaDeviceCanAccessPeer(&can_access_peer_0_1, gpuid_0, gpuid_1);

cudaDeviceCanAccessPeer(&can_access_peer_1_0, gpuid_1, gpuid_0);

cudaSetDevice(gpuid_0);

cudaDeviceEnablePeerAccess(gpuid_1, 0);

cudaSetDevice(gpuid_1);

cudaDeviceEnablePeerAccess(gpuid_0, 0);

cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault);

www.cineca.itwww.cineca.it 1818

�cudaMemcpy() knows that our buffers are on different devices (UVA),
will do a P2P copy now

�Note that this will transparently fall back to a normal copy through the
host if P2P is not available

MultiMulti--GPUsGPUs: : directdirect accessaccess

cudaDeviceCanAccessPeer(&can_access_peer_0_1, gpuid_0, gpuid_1);

cudaDeviceCanAccessPeer(&can_access_peer_1_0, gpuid_1, gpuid_0);

cudaSetDevice(gpuid_0);

cudaDeviceEnablePeerAccess(gpuid_1, 0);

cudaSetDevice(gpuid_1);

cudaDeviceEnablePeerAccess(gpuid_0, 0);

__global__ void SimpleKernel(float *src, float *dst)

{

const int idx = blockIdx.x * blockDim.x + threadIdx.x;

dst[idx] = src[idx];

}

www.cineca.itwww.cineca.it 1919

cudaDeviceEnablePeerAccess(gpuid_0, 0);

cudaSetDevice(gpuid_0);

SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpu1_buf);

SimpleKernel<<<blocks, threads>>> (gpu1_buf, gpu0_buf);

cudaSetDevice(gpuid_1);

SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpu1_buf);

SimpleKernel<<<blocks, threads>>> (gpu1_buf, gpu0_buf);

�After P2P initialization, this kernel can now read and write data in the
memory of multiple GPUs (just deferencing pointers!)
�UVA ensures that the kernel knows whether its argument is from local
memory, another GPU or zero-copy from the host

Asynchronous operationsAsynchronous operations

� Kernel calls are asynchronous by default
� Memory transfers and copybacks are blocking
� The cudaMemcpy has an asynchronous version (cudaMemcpyAsync)

� Boards <= 1.3 can overlap copy-copy (opposite directions) and copy-
kernel

� Boards >= 2.0 (Fermi and Kepler) can overlap kernel-kernel execution.

// First transfer

cudaMemcpyAsync(inputDevPtr, hostPtr, size, cudaMemcpyHostToDevice, 0);

// First invocation

MyKernel<<<100, 512, 0, 0>>> (outputDevPtr, inputDevPtr, size);

// Second transfer

cudaMemcpyAsync(inputDevPtr2, hostPtr2, size, cudaMemcpyHostToDevice, 0);

// Second invocation

MyKernel2<<<100, 512, 0, 0>>> (outputDevPtr2, inputDevPtr2, size);

// Wrapup

cudaMemcpyAsync(hostPtr, outputDevPtr, size, cudaMemcpyDeviceToHost, 0);

cudaMemcpyAsync(hostPtr2, outputDevPtr2, size, cudaMemcpyDeviceToHost, 0);

cudaThreadSyncronize();

StreamsStreams

• A stream is a FIFO command queue;

• a stream is independent to every other active stream;

• CUDA streams are the main way to exploit concurrent
execution and I/O operations.

CUDA CUDA StreamsStreams

cudaStream_t stream[3];

for (int i=0; i<3; ++i) cudaStreamCreate(&stream[i]);

float* hostPtr;

cudaMallocHost((void**)&hostPtr, 3 * size);

for (int i=0; i<3; ++i) cudaMemcpyAsync(inputDevPtr+i*size, hostPtr + i * size, size, cudaMemcpyHostToDevice, stream[i]);

for (int i=0; i<3; ++i) myComputeKernel<<<100, 512, 0, stream[i]>>>(outputDevPtr + i * size, inputDevPtr + i * size, size);

for (int i=0; i<3; ++i) cudaMemcpyAsync(hostPtr + i * size, outputDevPtr+i*size, size, cudaMemcpyDeviceToHost, stream[i]);

cudaThreadSynchronize();

for (int i=0; i<3; ++i) cudaStreamDestroy(&stream[i]);

www.cineca.itwww.cineca.it 2222

Transfer

Copyback

Kernel

Transfer

Transfer

Kernel

Kernel

Copyback

Copyback

Stream #1

Stream #2

Stream #3

time

Streams: how to overlap kernelsStreams: how to overlap kernels

Starting from capability 2.0 the board has the ability to overlap
computations from multiple kernels where:

• submission of commands happens in a breadth-first fashion*;• submission of commands happens in a breadth-first fashion*;

• no synchronization happens between command stages;

• no operations occur on the default stream;

• the active streams are less than 16*;

*Kepler architecture introduced the HyperQ technology:
� No more need for breadth-first command submission
� Supports up to 32 concurrent streams

CUDA Memory HierarchyCUDA Memory Hierarchy

Global MemoryGlobal Memory

� Memory area with the same purpose as host’s main
memory;

� High(er) bandwidth, high(er) latency;

� In order to exploit its bandwidth at best, all accesses
must be coalesced.must be coalesced.

Optimizations : coalescingOptimizations : coalescing
The global memory is accessed by 16 threads coalesced if the

following three conditions are met:

• either 4-byte words, resulting in one 64-byte memory transaction

• Or 8-byte words, resulting in one 128-byte memory transaction

• Or 16-byte words, resulting in two 128-byte memory transactions• Or 16-byte words, resulting in two 128-byte memory transactions

• All 16 words must lie in the same aligned segment

• Threads must access the words in a strictly increasing sequence:
the nth thread in the half-warp must access the nth word.

Optimizations: coalescing, Optimizations: coalescing,

examples: OKexamples: OK

Optimizations: coalescing, Optimizations: coalescing,

examples: NONexamples: NON--OKOK

Non sequential memory access, resulting in 16 memory accesses

The starting address is misaligned, the result is 16 memory accesses

Optimizations: coalescing (5), Optimizations: coalescing (5),

examples: NONexamples: NON--OKOK

Non-contiguos
access will result in access will result in
16 memory accesses

Coalescing for Capability 1.2Coalescing for Capability 1.2

The memory controller of 1.2 cards is much
improved, access as that in figure
would occur in a single transaction

Random access within a segment:
single 64B transaction (if they fit)

Coalescing for Capability Coalescing for Capability 1.21.2

Capability 1.2Capability 1.2

Hits misaligned, anyway, occur
in a single transaction

Capability 1.2Capability 1.2

Misaligned accesses, ending in 2 different
64B segments occur in two transactions

Coalescing for latest architecturesCoalescing for latest architectures

The memory controller has been vastly improved:

On devices with capability >= 2.0, memory accesses by the threads of

*L1: 128B-aligned, 128B wide lines.

**half-warp based for previous architectures.

On devices with capability >= 2.0, memory accesses by the threads of
a warp** are coalesced into the minimum number of L1 lines* that
satisfies all threads.

CoalescingCoalescing: : examplesexamples

www.cineca.itwww.cineca.it 3535

Shared memoryShared memory

• A sort of explicit cache;

• resides on the chip so it is much faster than the on-
board memory;

• size is 16KB (48KB on Fermi by default*)• size is 16KB (48KB on Fermi by default*)

• 16 (32 for Fermi) banks can be accessed
simultaneously by the same warp;

• Banks are organized such that:
�successive 32-bit words are assigned to successive
banks;

�each bank has 32-bit per cycle bandwidth.

*Kepler architecture introduced some improvements:
� ability to switch from 4B to 8B banks

(2x bandwidth for double precision codes)

Shared Memory: bank conflictsShared Memory: bank conflicts

� If at least two threads belonging to the same half-warp (whole warp
for capability 1.0) access the same shared memory bank, then the
accesses are serialized (groups transactions in conflict-free
accesses);

� If all the threads access the same address, a broadcast is
performed;

� If part of the half-warp accesses the same address, a multicast is
performed (capability >= 2.0);

Texture memoryTexture memory
• Load requests are cached;

• it is read only, must be set by the host;

• could bring benefits if the threads within the same block access
memory using regular 2D patterns, but you need appropriate
binding;

• specifically, texture memories and caches are designed for • specifically, texture memories and caches are designed for
graphics applications where memory access patterns exhibit a
great deal of spatial locality;

• dedicated hardware for on-the-fly interpolation.

For typical linear patterns,

global memory (if coalesced)

is faster.

// allocate array and copy image data

cudaChannelFormatDesc channelDesc =

cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);

cudaArray* cu_array;

cudaMallocArray(&cu_array, &channelDesc, width, height);

cudaMemcpyToArray(cu_array, 0, 0, h_data, size, cudaMemcpyHostToDevice);

// set texture parameters

tex.addressMode[0] = cudaAddressModeWrap;

tex.addressMode[1] = cudaAddressModeWrap;

tex.filterMode = cudaFilterModeLinear;

tex.normalized = true; // access with normalized texture coordinates

// Bind the array to the texture

TextureTexture MemoryMemory

// declare texture reference for 2D float texture

texture<float, 2, cudaReadModeElementType> tex;

__global__ void// Bind the array to the texture

cudaBindTextureToArray(tex, cu_array, channelDesc);

www.cineca.itwww.cineca.it 3939

__global__ void

transformKernel(float* g_odata, int width, int height, float theta)

{

// calculate normalized texture coordinates

unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;

unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;

float u = x / (float) width;

float v = y / (float) height;

// transform coordinates

u -= 0.5f;

v -= 0.5f;

float tu = u*cosf(theta) - v*sinf(theta) + 0.5f;

float tv = v*cosf(theta) + u*sinf(theta) + 0.5f;

// read from texture and write to global memory

g_odata[y*width + x] = tex2D(tex, tu, tv);

}

Kepler: global Kepler: global loadsloads throughthrough

texturetexture

The compiler (LLVM) can detect texture-compliant loads
and map them to the new «global load through texture»
PTX instruction:

• global loads are going to pass through texture pipeline;

• dedicated cache (no L1 pressure) and memory pipe,
relaxed coalescing;relaxed coalescing;

• automatically generated by compiler (no texture map

needed) for accesses through compliant pointers
(constant and restricted);

• useful for bandwidth-limited kernels (bandwidths sum).

www.cineca.itwww.cineca.it 4040

Constant MemoryConstant Memory

� Extremely fast on-board memory area
� Read only, must be set by the host

� 64 KB, cached reads in a dedicated L1 (register space)� 64 KB, cached reads in a dedicated L1 (register space)
� Coalesced access if all threads of a warp read the same

address
� Useful to off-load long argument lists from shared memory

__device__ __constant__ parameters_t args;

__host__ void copy_params(const parameters_t* const host_args)
{

cudaMemcpyToSymbol(“args", host_args, sizeof(parameters_t));
}

RegistersRegisters

� Just like CPU registers, access has no latency;
� used for scalar data local to a thread;
� taken by the compiler from the SM pool (32K for Fermi, 64K for � taken by the compiler from the SM pool (32K for Fermi, 64K for

Kepler) and statically allocated to each thread;
� register pressure one of the most dangerous occupancy
limiting factors.

RegistersRegisters
Some tips:
� try to fold “stack” variables (it would be less useful on LLVM)

� try to offload data to shared memory;
� use launch bounds to force the number of resident blocks;

#define MAX_THREADS_PER_BLOCK 256

#define MIN_BLOCKS_PER_MP 2

� limit register usage via compiler option.

#define MIN_BLOCKS_PER_MP 2

__global__ void

__launch_bounds__(MAX_THREADS_PER_BLOCK,
MIN_BLOCKS_PER_MP)

my_kernel(int* inArr, int* outArr) { … }

nvcc –Xptas –v mykernel.cu

ptxas info : Compiling entry function '_Z12my_kernelP9domain_t_' for 'sm_20'

ptxas info : Used 13 registers, 8+16 bytes smem

nvcc –-maxrregcount 10 –Xptas –v mykernel.cu

ptxas info : Compiling entry function '_Z12my_kernelP9domain_t_' for 'sm_20'

ptxas info : Used 10 registers, 12+0 bytes lmem, 8+16 bytes smem

Local memory and cachesLocal memory and caches

Local memoryLocal memory

� “Local” because it’s private on a per-thread basis;

� it’s actually a global area used to spill out data when SM
runs out of resources;runs out of resources;

�addressing is resolved by the compiler;

�cached (store only).

CachesCaches

� FERMI architecture introduces caching mechanisms for
global memory accesses (constant and texture are cached
since 1.0)

� L1: private to thread, virtual cache implemented into
shared memoryshared memory

�L2: 768KB, grid-coherent, 25% better latency than DRAM

// L1 = 48 KB
// SH = 16 KB
cudaFuncSetCacheConfig(kernel, cudaFuncCachePreferL1);

// L1 = 16 KB
// SH = 48 KB
cudaFuncSetCacheConfig(kernel, cudaFuncCachePreferShared);

// Try to decrease spilled registers eviction from L1,
// disable L1 caching for global memory loads
$ nvcc –Xptas –dlcm=cg

*Kepler architecture introduced some improvements:
� New 32 KB + 32 KB partition option

ExecutionExecution OptimizationOptimizationExecutionExecution OptimizationOptimization

www.cineca.itwww.cineca.it 4747

OccupancyOccupancy

The board’s occupancy is the ratio of active warps to
the maximum number of warps supported on a

Keeping the hardware busy helps the warp scheduler to
hide latencies.

www.cineca.itwww.cineca.it 4848

the maximum number of warps supported on a
multiprocessor.

Occupancy: constraintsOccupancy: constraints

Every board’s resource can become an occupancy
limiting factor:
� shared memory;
� grid and block sizes;

(max threads per SM/max blocks per SM)(max threads per SM/max blocks per SM)

� used (and spilled) registers

Given an actual kernel configuration, is possible to
predict the maximum theoretical occupancy allowed.

Occupancy: block sizing tipsOccupancy: block sizing tips

Some experimentation is required.

However there are some heuristic rules:
� threads per block should be a multiple of warp size;� threads per block should be a multiple of warp size;
� a minimum of 64 threads per block should be used;
� 128-256 threads per block is universally known to be

a good starting point for further experimentation;
� prefer to split very large blocks into smaller blocks.

Kepler: Kepler: dynamicdynamic parallelismparallelism

• One of the biggest CUDA limitations is the need to fit a single grid
configuration for the whole kernel.

• Kepler (in addition to CUDA 5.x) introduced Dynamic Parallelism

• It enables a global kernel to be called from within another kernel

• The child grid can be dynamically sized and optionally synchronized

If you need to reshape the grid, you have to resync back to host and split your code.

www.cineca.itwww.cineca.it 5151

__global__ ChildKernel(void* data){

//Operate on data

}

__global__ ParentKernel(void *data){

ChildKernel<<<16, 1>>>(data);

}

// In Host Code:

ParentKernel<<<256, 64>>(data);

InstructionsInstructions

Arithmetic ops:
� prefer integer shift operators instead of division and

modulo (would be less useful with LLVM);
� beware of (implicit) casts (very expensive);
� use intrinsics for trascendental functions where possible;
� try the fast math implementation.

CapabilityCapability: : instructioninstruction throughputthroughput

c
y
c
l
e

x

s
m

www.cineca.itwww.cineca.it 5353

i
n
s
t
r
u
c
t
i
o
n
s

x

c
y
c
l
e

Control FlowControl Flow

Different execution paths inside the same warp are managed by the
predication mechanism and lead to thread divergence.

if (threadIdx.x == 0) {A} if (threadIdx.x == 0) {A}
else {A}

if (threadIdx.x == 0) {A}
else if (threadIdx.x == 1) {A}

if (vec[threadIdx.x] > 1.0f) {A}

� Minimize the number of execution branches inside the same warp;
� make the compiler’s life easier by unrolling loops (hand-coded,

pragma or option);
� use signed counters for loops (would be less useful with LLVM);

if (vec[threadIdx.x] > 1.0f) {A}

ExploitingExploiting MultiMulti--GPUsGPUs

CUDA >= 4.0 introduced the N-to-N bound feature:

1. Every thread can be bound to any board

2. Every board can be bound to an arbitrary number of
threads

#pragma omp parallel

#pragma omp sections

{

www.cineca.itwww.cineca.it 5555

{

#pragma omp section

{

cutilSafeCall(cudaSetDevice(0));

cudaMemcpy(device_data_1, host_data_1, size, cudaMemcpyHostToDevice);

my_kernel<<< grid, block >>>(device_data_1);

// ...

}

#pragma omp section

{

cutilSafeCall(cudaSetDevice(1));

cudaMemcpy(device_data_2, host_data_2, size, cudaMemcpyHostToDevice);

my_kernel<<< grid, block >>>(device_data_2);

// ...

}

}

Multi-GPU can be exploited
through your favourite multi-
threading paradigm
(OpenMP, pthreads, etcA)

Tools Tools OverviewOverviewTools Tools OverviewOverview

www.cineca.itwww.cineca.it 5656

Development Development toolstools

• Common
� Memory Checker

� Built-in profiler

� Visual Profiler

• Linux
� CUDA GDB

� Parallel Nsight for Eclipse

• Windows
� Parallel Nsight for VisualStudio

www.cineca.itwww.cineca.it 5757

Profiling tools: builtProfiling tools: built--inin

The CUDA runtime provides a useful profiling facility without the need
of external tools.

export CUDA_PROFILE=1

export CUDA_PROFILE_CONFIG=$HOME/.config

gld_incoherent: Number of non-coalesced global memory loads

gld_coherent: Number of coalesced global memory loads

gst_incoherent: Number of non-coalesced global memory stores

// Contents of config

gld_coherent

gld_incoherent

gst_coherent

gst_incoherent

method,gputime,cputime,occupancy,gld_incoherent,gld_coherent,gst_incoherent,gst_coherent

method=[memcopy] gputime=[438.432]

method=[_Z17reverseArrayBlockPiS_] gputime=[267.520] cputime=[297.000] occupancy=[1.000]
gld_incoherent=[0] gld_coherent=[1952] gst_incoherent=[62464] gst_coherent=[0]

method=[memcopy] gputime=[349.344]

gst_incoherent: Number of non-coalesced global memory stores

gst_coherent: Number of coalesced global memory stores

local_load: Number of local memory loads

local_store: Number of local memory stores

branch: Number of branch events taken by threads

divergent_branch: Number of divergent branches within a warp

instructions: instruction count

warp_serialize: Number of threads in a warp that serialize
based on address conflicts to shared or constant memory

cta_launched: executed thread blocks

ProfilingProfiling: Visual Profiler: Visual Profiler

• Traces execution at host, driver and kernel levels (unified
timeline)

• Supports automated analysis (hardware counters)

www.cineca.itwww.cineca.it 5959

Debugging: CUDADebugging: CUDA--GDBGDB

• Well-known tool enhanced with CUDA extensions

• Works well on single-gpu systems (OS graphics disabled)

• Can be run under GDB-targeted tools and GUIs (multi-

gpu systems)

(cuda-gdb) info cuda threads

www.cineca.itwww.cineca.it 6060

(cuda-gdb) info cuda threads

BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line

Kernel 0* (0,0,0) (0,0,0) (0,0,0) (255,0,0) 256 0x0000000000866400 bitreverse.cu 9

(cuda-gdb) thread

[Current thread is 1 (process 16738)]

(cuda-gdb) thread 1

[Switching to thread 1 (process 16738)]

#0 0x000019d5 in main () at bitreverse.cu:34

34 bitreverse<<<1, N, N*sizeof(int)>>>(d);

(cuda-gdb) backtrace

#0 0x000019d5 in main () at bitreverse.cu:34

(cuda-gdb) info cuda kernels

Kernel Dev Grid SMs Mask GridDim BlockDim Name Args

0 0 1 0x00000001 (1,1,1) (256,1,1) bitreverse data=0x110000

Debugging: CUDADebugging: CUDA--MEMCHECKMEMCHECK

• It’s able to detect buffer overflows, misaligned global memory
accesses and leaks

• Device-side allocations are supported

• Standalone or fully integrated in CUDA-GDB

$ cuda-memcheck --continue ./memcheck_demo

========= CUDA-MEMCHECK

Mallocing memory

www.cineca.itwww.cineca.it 6161

Mallocing memory

Running unaligned_kernel

Ran unaligned_kernel: no error

Sync: no error

Running out_of_bounds_kernel

Ran out_of_bounds_kernel: no error

Sync: no error

========= Invalid __global__ write of size 4

========= at 0x00000038 in memcheck_demo.cu:5:unaligned_kernel

========= by thread (0,0,0) in block (0,0,0)

========= Address 0x200200001 is misaligned

=========

========= Invalid __global__ write of size 4

========= at 0x00000030 in memcheck_demo.cu:10:out_of_bounds_kernel

========= by thread (0,0,0) in block (0,0,0)

========= Address 0x87654320 is out of bounds

=========

=========

========= ERROR SUMMARY: 2 errors

ParallelParallel NSightNSight

• Plug-in for major IDEs (Eclipse and VisualStudio)

• Aggregates all external functionalities:
� Debugger (fully integrated)

� Visual Profiler

� Memory correctness checker

• As a plug-in, it extends all the convenience of IDEs to • As a plug-in, it extends all the convenience of IDEs to
CUDA

On Windows systems:

• Now works on a single GPU

• Supports remote debugging and profiling

• Latest version (2.2) introduced live PTX assembly
view, warp inspector and expression lamination

www.cineca.itwww.cineca.it 6262

ParallelParallel NSightNSight

www.cineca.itwww.cineca.it 6363

ParallelParallel NSightNSight

www.cineca.itwww.cineca.it 6464

