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GPU vs CPU: different philosophies

Design of GPUs optimized for the execution 

of large number of threads dedicated to 

floating-points calculations: 

• many-cores (several hundreds)

• minimized the control logic in order to 

manage leightweight threads and 

maximize execution throughput

• taking advantage of large number of 

threads to overcome long-latency 

memory accesses   

Design of CPUs optimized for 

sequential code performance:

• multi-core

• sophisticated control logic unit

• large cache memories to 

reduce access latencies



GPU NVIDIA Tesla T10 architecture

Streaming
Multiprocessor
(SM)

Streaming 
Processor (SP)

30 Multiprocessors

Each SP is 
massively

threaded

Thousands of 
simultaneous  
threads per 
application



Fermi architecture

• 512 cores 
(16 SM x 32 SP)

• first GPU architecture to support 
a true cache hierarchy:
L1 cache per SM
unified L2 caches (768 Kb)unified L2 caches (768 Kb)

• 1.5x Memory Bandwidth 
(GDDR5)

• 6 Gb of global memory
• 48Kb of shared memory

• Concurrent Kernels 
• support C++



CUDA core architecture

• New IEEE 754-2008 
floating point 
standard

• Fused multiply-add 
(FMA) instruction for 
both single and 
(FMA) instruction for 
both single and 
double precision

• Newly designed 
integer ALU optimized 
for 64-bit and 
extended precision 
operations



NVIDIA namingNVIDIA naming

• Mainstream & laptops: GeForce
• Target: videogames and multi-media

• Workstation: Quadro
• Target: graphic professionals who use CAD and 3D • Target: graphic professionals who use CAD and 3D 

modeling applications

• The surcharge is due to more memory and 
especially the specific drivers for accelerating 
applications

• GPGPU: Tesla
• Target: High Performance Computing



GPUs are designed as numeric 

computing engines, therefore they will 

not perform well on other tasks.

Applications should use both CPUs and 

GPUs, where the latter is exploited as 

a coprocessor in order to speed up 

There cannot be a GPU without a CPU

numerically intensive sections of the 

code by a massive fine grained 

parallelism.

CUDA programming model introduced 

by NVIDIA in 2007, is designed to 

support joint CPU/GPU execution of 

an application.



NVIDIA C compiler

nvcc front-end for compilation: 

� separates GPU code from 

CPU code

� CPU code -> C/C++ compiler � CPU code -> C/C++ compiler 

(Microsoft, GCC, ecc.)

� GPU code is converted in an 

intermediate language: PTX, 

then in assembler

� link all executables



CUDA program:

CUDA programming model

Compute Unified Device Architecture:

� extends ANSI C language with minimal extensions 

� provides application programming interface (API) to manage 
host and device components

• Serial sections of the code are performed by CPU (host)  

• The parallel ones (that exhibit rich amount of data 

parallelism) are performed by GPU (device) in the SPMD 

mode as CUDA kernels.

• host and device have separate memory spaces: 

programmers need to transfer data between CPU and GPU 

in a manner similar to “one-sided” message passing.



Device management

• Application can query and select GPUs

� cudaGetDeviceCount(int *count)

� cudaSetDevice(int device)

� cudaGetDevice(int *device)

� cudaGetDeviceProperties(cudaDeviceProp 
*prop, int device)*prop, int device)

• Multiple threads can share a device

• A single thread can manage multiple devices

� cudaSetDevice(i) to select current device

� cudaMemcpy(…) for peer-to-peer copies



Device management (sample code)

int cudadevice;

struct cudaDeviceProp prop;

cudaGetDevice( &cudadevice );

cudaGetDeviceProperties (&prop, cudadevice);

mpc=prop.multiProcessorCount;mpc=prop.multiProcessorCount;

mtpb=prop.maxThreadsPerBlock;

shmsize=prop.sharedMemPerBlock;

printf("Device %d: number of multiprocessors 
%d\n , max number of threads per block 
%d\n, shared memory per block %d\n", 
cudadevice, mpc, mtpb, shmsize);



CUDA threads organization

A kernel is executed as a grid of many parallel threads. 

They are organized into a two-level hierarchy:

� a grid is organized as up to 3-dim array of thread blocks

� each block is organized into up to 3-dim array of threads

� all blocks have the same number of threads 

organized in the same manner.

Block of threads:
set of concurrently executing 
threads that can cooperate
among themselves through 
• barrier synchronization,by 

using the function __syncthreads();
• shared memory.



CUDA threads organization

Because all threads in a grid execute the same code, they rely on unique 

coordinates assigned to them by the CUDA runtime system as built-in 

preinitialized variables

• Block ID up to 3 dimensions: 

(blockIdx.x, blockIdx.y, blockIdx.z)

• Thread ID within the block up to 3 dimensions: 

(threadIdx.x, threadIdx.y, threadIdx.z)(threadIdx.x, threadIdx.y, threadIdx.z)

The exact organization of a grid is determined by the execution 

configuration provided at kernel launch.

Two additional variables of type dim3 (C struct with 3 unsigned integer 

fields) are declared:

• gridDim               dimensions of the grid in terms of number of blocks

• blockDim             dimensions of the block in terms of number of threads



Launching a kernel

A kernel must be called from the host with the following syntax:

__global__ void KernelFunc(…);
dim3 gridDim(100, 50);  // 5000 thread blocks
dim3 blockDim(8, 8, 4); // 256 threads per block

//call the kernel
KernelFunc<<< gridDim, blockDim >>>(<arguments>);KernelFunc<<< gridDim, blockDim >>>(<arguments>);

All kernel calls are 

asynchronous!

Typical CUDA grids contain 

thousands to millions of 
threads.



Thread ID computation

The build-in variables are 

used to compute the global ID

of the thread, in order to 

determine the area of data that 

it is designed to work on.it is designed to work on.

• 1D:

� int id = blockDim.x * blockIdx.x + threadIdx.x;

• 2D:

� int iy = blockDim.y * blockIdx.y + threadIdx.y;

� int ix = blockDim.x * blockIdx.x + threadIdx.x;

� int id = iy * dimx + ix;



Kernel example



Function modifiers

Function

declaration

Executed 

on the

Only callable 

from the

CUDA extends C function declarations with three qualifier keywords.

__device__
(device functions)

device device

__global__
(kernel function)

device host

__host__
(host functions)

host host



Hierarchy of device memories

CUDA’s hierarchy of threads maps to a 

hierarchy of memories on the GPU:

• Each thread has some registers,

used to hold automatic scalar 

variables declared in kernel and 

device functions, and a per-thread 

private memory space used for 

register spills, function calls, and C 

automatic array variables

• Each thread block has a per-block 

shared memory space used for inter-

thread communication, data sharing, 

and result sharing in parallel 

algorithms

• Grids of thread blocks share results in 

global memory space



CUDA device memory model

on-chip memories:

� registers (~8kB) → SP

� shared memory (~16kB) → SM

� they can be accessed at very high speed 
in a highly parallel manner.

per-grid memories:

� global memory (~4GB)

� long access latencies (hundreds of � long access latencies (hundreds of 
clock cycles)

� finite access bandwith

� constant memory (~64kB)

� read only

� short-latency (cached) and high 
bandwith when all threads 
simultaneously access the same 
location

� texture memory (read only)

� CPU can transfer data to/from all 

per-grid memories. 

Local memory is implemented as part of 

the global memory, therefore has a long 

access latencies too.



CUDA variable qualifiers

Variable declaration memory lifetime scope

Automatic scalar variables register kernel thread

Automatic array variables
__device__ __local__ local kernel thread

__device__ __shared__ shared kernel block

__device__ global application grid

__device__ __constant__ constant application grid

� Global variables are often used to pass information from one kernel to another.

� Constant variables are often used for providing input values to kernel functions.



Shared memory allocation

• Static modality
inside the kernel:
__shared__ float f[100];

• Dynamic modality
in the execution configuration of the kernel,in the execution configuration of the kernel,
define the number of bytes to be allocated per 
block in the shared memory :

kernel<<<DimGrid, DimBlock, SharedMemBytes>>>(U);

while inside the kernel:
extern __shared__ float f[ ];



Device memory allocation

CUDA API functions to manage data allocation 
on the device memory:

cudaMalloc(void** pointer, size_t nbytes)
� It allocates a part of the device global memory
� The first parameter is the address of a generic � The first parameter is the address of a generic 

pointer variable that must point to the allocated 
object 
� it should be cast to (void**)! 

� The second parameter is the size of the object to 
be allocated, in terms of bytes

cudaFree(void* pointer)
� It frees the storage space of the object 



cudaMemsetcudaMemset

cudaMemset (void * devPtr, int value, size_t count)

Fills the first count bytes of the memory area pointed 

to by devPtr with the constant byte value value.to by devPtr with the constant byte value value.

Cuda version of the C memset() function.

devPtr - Pointer to device memory 

value - Value to set for each byte of specified memory 

count - Size in bytes to set
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Data transfer CPU-GPU

API blocking functions for data transfer between memories:

Destination   source  number of        symbolic constant 
data        bytes          indicating  the direction



Constant memory

cudaMemcpyToSymbol(const char * symbol, 
const void * src, 
size_t count, 
size_t offset, 
enum cudaMemcpyKind kind) 

symbol - symbol destination on device, it can either be a symbol - symbol destination on device, it can either be a 
variable that resides in global or constant memory 
space, or it can be a character string, naming a variable 
that resides in global or constant memory space.

src - source memory address 
count - size in bytes to copy 
offset - offset from start of symbol in bytes 
kind - type of transfer, it can be either 

cudaMemcpyHostToDevice or 
cudaMemcpyDeviceToDevice



Minimize transfersMinimize transfers

• Keep as much data as possible on the GPU 

memory bandwith on GPU = 150 GB/s

memory bandwith on PCIe  ~= 6 GB/s Minimize number of copies!

• Keep as much data as possible on the GPU 

memory

• Sometimes for the GPU is cheaper to 

recalculate some data rather than transfer them 

from the CPU



Matrix- matrix multiplication 

example

CUDA parallelization:

each thread computes an 

element of P

P = M*N



Matrix- matrix multiplication 

host code

void MatrixMultiplication(float* M, float *N, float *P, int width)
{

size_t size = width*width*sizeof(float);
float* Md, Nd, Pd;
// transfer M and N to the device memory
cudaMalloc((void**)&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMalloc((void**)&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
// allocate P on the device
cudaMalloc((void**)&Pd, size);
// kernel invocation
dim3 gridDim(1,1);
dim3 blockDim(width,width);
MNKernel<<<dimGrid, dimBlock>>>(Md,Nd,Pd,width);
// transfer P from the device to the host 
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);
// free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree(Pd);

}



Matrix- matrix multiplication 

device code

__global__ void MNKernel(float* Md, float *Nd, float *Pd, 
int width)

{
// 2D thread ID
int col = threadIdx.x;
int row = threadIdx.y;

// Pvalue stores the Pd element that is computed by the// Pvalue stores the Pd element that is computed by the
// thread
float Pvalue = 0;
for (int k=0; k < width; k++)

Pvalue += Md[row * width + k] * Nd[k * width + col];

// write the matrix to device memory (each thread
// writes one element)
Pd[row * width + col] = Pvalue;

}



Threads execution 

CUDA’s hierarchy of threads/memories maps 

to the hierarchy of processors on the GPU:

• a GPU executes one or more kernel grids;

• a streaming multiprocessor (SM) executes one 

or more thread blocks; or more thread blocks; 

• a streaming processor (SP) in the SM 

executes threads.

A maximum number of blocks can be assigned to each SM 
(8 for Tesla T10) 

The runtime system maintains a list of blocks that need to 
execute and assigns new blocks to SMs as they complete 
the execution of blocks previously assigned to them.



Transparent scalability

By not allowing threads in different blocks to 

synchronize with each other, CUDA runtime system 

can execute blocks in any order relative to each other.

This flexibility enables to execute the same application 

code on hardware with different numbers of SM.



Resource limitations



Matrix- matrix multiplication 

example

Limitation: a block can have up to 512 threads (for Tesla 

T10). Therefore the previous implementation can 

compute square matrices of order less than 32.

Improvement:Improvement:

• use more blocks by breaking matrix Pd into square tiles 

• all elements of a tile are computed by a block of threads

• each thread still calculates one Pd element but it uses its 

blockIdx values to identify the tile that contains its 

element.



Matrix- matrix multiplication 

example

__global__ void MNKernel(float* Md, float *Nd, float *Pd, int 
width)

{
// 2D thread ID
int col = blockIdx.x*TILE_WIDTH + threadIdx.x;
int row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Pvalue stores the Pd element that is computed by the 
thread
float Pvalue = 0;float Pvalue = 0;
for (int k=0; k < width; k++)
Pvalue += Md[row * width + k] * Nd[k * width + col]; 

Pd[row * width + col] = Pvalue;
}

Kernel invocation:

dim3 gridDim(width/TILE_WIDTH,width/TILE_WIDTH);
dim3 blockDim(TILE_WIDTH,TILE_WIDTH);
MNKernel<<<dimGrid, dimBlock>>>(Md,Nd,Pd,width);



Matrix- matrix multiplication 

example

Which is the optimal dimension of the block (i.e. TILE_WIDTH)?

Knowing that each SM of a Tesla T10 can have up to 1024 
threads, we have 

• 8x8 = 64 threads        1024/64 = 12 blocks to fully occupy an 
SM; but we are limited to 8 blocks in each SM therefore we SM; but we are limited to 8 blocks in each SM therefore we 
will end up with only 64x8 = 512 threads in each SM.

• 16x16 = 256 threads        1024/256 = 4 blocks 

we will have full thread capacity in each SM.

• 32x32 = 1024 threads per block which exceed the limitation of 
up to 512 threads per block. 

TILE_WIDTH = 16 !



Global memory access efficiency

Although having many threads available for execution 
can theoretically tolerate long memory access latency, 
one can easily run into a situation where traffic 
congestion prevents all but few threads from making 
progress, thus rendering some SM idle!

A common strategy for reducing global memory trafficA common strategy for reducing global memory traffic
(i.e. increasing the number of floating-point operations 
performed for each access to the global memory) is to 
partition the data into subsets called tiles such that 
each tile fits into the shared memory and the kernel 
computations on these tiles can be done independently 
of each other.

In the simplest form, the tile dimensions equal those of 
the block.



Matrix- matrix multiplication 

example

In the previous kernel:
thread(x,y) of block(0,0) access the elements of Md row x and Nd

column y from the global memory. 
thread(0,0) and thread(0,1) access the same Md row 0

What if these threads collaborate so that the elements of this row are 
only loaded from the global memory once? We can reduce the total 
number of accesses to the global memory by half!

Basic idea:
• to have the threads within a block collaboratively load Md and Nd

elements into the shared memory before they individually use these 
elements in their dot product calculation.

• The dot product performed by each thread is now divided into 
phases: in each phase all threads in a block collaborate to load a tile 
of Md and a tile of Nd into the shared memory and use these values 
to compute a partial product. The dot product would be performed in 
width/TILE_WIDTH phases. 

• the reduction of the accesses to the global memory is by a factor of  
TILE_WIDTH.



Matrix- matrix multiplication 

example

1 phase  →  1 tile

For each phase:

� Each thread of the block loads 

1 element of a tile of M

1 element of a tile of N

at the end the entire tile is loaded in the shared

memory and is visible to all threads of the block.memory and is visible to all threads of the block.

� Each thread compute the partial dot product

involving the elements of the current tile  



Matrix- matrix multiplication 

example

__global__ void MNKernel(float* Md, float *Nd, float *Pd, int width)
{

__shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
__shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

// 2D thread ID
int tx = threadIdx.x; int ty = threadIdx.y;
int col = blockIdx.x*TILE_WIDTH + tx;
int row = blockIdx.y*TILE_WIDTH + ty;

float Pvalue = 0;float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
for (int m=0; m < width/TILE_WIDTH; m++)
{//collaborative loading of Md and Nd tiles into shared memory

Mds[ty][tx] = Md[row*width + (m*TILE_WIDTH + tx)];
Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*width + col];
__syncthreads();

for (int k=0; k < TILE_WIDTH; k++)
Pvalue += Mds[ty][k] * Nds[k][tx];

__syncthreads();
}

Pd[row * width + col] = Pvalue;
}



Memory as a limiting factor to 

parallelism

The limited amount of CUDA memory limits the number of 
threads that can simultaneously reside in the SM!

For the matrix multiplication example, shared memory can 
become a limiting factor:

TILE_WIDTH = 16        each block requires 16x16x4 = 1kB of storage for MdsTILE_WIDTH = 16        each block requires 16x16x4 = 1kB of storage for Mds
+ 1kB for Nds
2kB of shared memory per block

The 16-kB shared memory allows 8 blocks to simultaneously reside 

in an SM.  Ok!

But the maximum number of threads per SM is 1024 (for Tesla T10)

only 1024/256 = 4 blocks are allowed in each SM

only 4 x 2kB = 8kB of the shared memory will be used.

Hint: Use occupancy calculator



Thread scheduling

Once a block is assigned to a SM, 

it is further partitioned into 32-thread 

units called  warps.

Warps are scheduling units in SM:

all threads in a same warp execute 

the same instruction when the warp

is selected for execution (Single-Instruction, Multiple-Thread)

Block of threads warps
multiprocessor

Threads often execute long-latency operations:

� global memory access 

� pipelined floating point arithmetics 

� branch instructions

It is convenient to assign a large number of warps to each SM, because 
the long waiting time of some warp instructions is hidden by executing 
instructions from other warps. Therefore the selection of ready warps for 
execution does not introduce any idle time into the execution timeline 
(zero-overhead thread scheduling).



Control flowControl flow

The hardware executes an 

instruction for all threads in 

the same warp before moving 

to the next instruction (SIMT).

It works well when all threads 

within a warp follow the same 

control flow path when working control flow path when working 

their data.

When threads in the same warp 

follow different paths of control 

flow, we say that these threads 

diverge in their execution.

For an if-then-else construct the 

execution of the warp will require 

multiple passes through the 

divergent paths.
Try to avoid if-then-else !



An if-then-else construct can result in thread divergence 
when its decision condition is based on threadIdx
values.   

A sum reduction algorithm extracts a single value from an 
array of values in order to sum them. Within a block 
exploit the shared memory!

Vector reduction example

(within a thread block)

There is thread divergence!



Vector reduction example

Instead of adding 
neighbor elements 
in the first round, 
add elements that 
are half a section 
away from each 
other and so on.other and so on.

No divergence until partial sums 
involve less than 32 elements 
(because of the warp size)



Error checking 

All runtime functions return an error code of type cudaError_t.

No error is indicated as cudaSuccess.

char* cudaGetErrorString(cudaError_t code)

returns a string describing the error:

For asynchronous functions (i.e. kernels, asynchronous For asynchronous functions (i.e. kernels, asynchronous 
copies) the only way to check for errors just after the call is 
to synchronize: cudaDeviceSynchronize()

Then the following function returns the code of the last error:

cudaError_t cudaGetLastError()

printf("%s\n", cudaGetErrorString(cudaGetLastError()));
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