
Introduction to GPGPUs and to
CUDA programming model

www.cineca.it

CUDA programming model

Marzia Rivi
m.rivi@cineca.it

Agenda

• GPGPU architecture

• CUDA programming model

• CUDA efficient programming

• Debugging & profiling tools• Debugging & profiling tools

• CUDA libraries

GPU vs CPU: different philosophies

Design of GPUs optimized for the execution

of large number of threads dedicated to

floating-points calculations:

• many-cores (several hundreds)

• minimized the control logic in order to

manage leightweight threads and

maximize execution throughput

• taking advantage of large number of

threads to overcome long-latency

memory accesses

Design of CPUs optimized for

sequential code performance:

• multi-core

• sophisticated control logic unit

• large cache memories to

reduce access latencies

GPU NVIDIA Tesla T10 architecture

Streaming
Multiprocessor
(SM)

Streaming
Processor (SP)

30 Multiprocessors

Each SP is
massively

threaded

Thousands of
simultaneous
threads per
application

Fermi architecture

• 512 cores
(16 SM x 32 SP)

• first GPU architecture to support
a true cache hierarchy:
L1 cache per SM
unified L2 caches (768 Kb)unified L2 caches (768 Kb)

• 1.5x Memory Bandwidth
(GDDR5)

• 6 Gb of global memory
• 48Kb of shared memory

• Concurrent Kernels
• support C++

CUDA core architecture

• New IEEE 754-2008
floating point
standard

• Fused multiply-add
(FMA) instruction for
both single and
(FMA) instruction for
both single and
double precision

• Newly designed
integer ALU optimized
for 64-bit and
extended precision
operations

NVIDIA namingNVIDIA naming

• Mainstream & laptops: GeForce
• Target: videogames and multi-media

• Workstation: Quadro
• Target: graphic professionals who use CAD and 3D • Target: graphic professionals who use CAD and 3D

modeling applications

• The surcharge is due to more memory and
especially the specific drivers for accelerating
applications

• GPGPU: Tesla
• Target: High Performance Computing

GPUs are designed as numeric

computing engines, therefore they will

not perform well on other tasks.

Applications should use both CPUs and

GPUs, where the latter is exploited as

a coprocessor in order to speed up

There cannot be a GPU without a CPU

numerically intensive sections of the

code by a massive fine grained

parallelism.

CUDA programming model introduced

by NVIDIA in 2007, is designed to

support joint CPU/GPU execution of

an application.

NVIDIA C compiler

nvcc front-end for compilation:

� separates GPU code from

CPU code

� CPU code -> C/C++ compiler � CPU code -> C/C++ compiler

(Microsoft, GCC, ecc.)

� GPU code is converted in an

intermediate language: PTX,

then in assembler

� link all executables

CUDA program:

CUDA programming model

Compute Unified Device Architecture:

� extends ANSI C language with minimal extensions

� provides application programming interface (API) to manage
host and device components

• Serial sections of the code are performed by CPU (host)

• The parallel ones (that exhibit rich amount of data

parallelism) are performed by GPU (device) in the SPMD

mode as CUDA kernels.

• host and device have separate memory spaces:

programmers need to transfer data between CPU and GPU

in a manner similar to “one-sided” message passing.

Device management

• Application can query and select GPUs

� cudaGetDeviceCount(int *count)

� cudaSetDevice(int device)

� cudaGetDevice(int *device)

� cudaGetDeviceProperties(cudaDeviceProp
*prop, int device)*prop, int device)

• Multiple threads can share a device

• A single thread can manage multiple devices

� cudaSetDevice(i) to select current device

� cudaMemcpy(…) for peer-to-peer copies

Device management (sample code)

int cudadevice;

struct cudaDeviceProp prop;

cudaGetDevice(&cudadevice);

cudaGetDeviceProperties (&prop, cudadevice);

mpc=prop.multiProcessorCount;mpc=prop.multiProcessorCount;

mtpb=prop.maxThreadsPerBlock;

shmsize=prop.sharedMemPerBlock;

printf("Device %d: number of multiprocessors
%d\n , max number of threads per block
%d\n, shared memory per block %d\n",
cudadevice, mpc, mtpb, shmsize);

CUDA threads organization

A kernel is executed as a grid of many parallel threads.

They are organized into a two-level hierarchy:

� a grid is organized as up to 3-dim array of thread blocks

� each block is organized into up to 3-dim array of threads

� all blocks have the same number of threads

organized in the same manner.

Block of threads:
set of concurrently executing
threads that can cooperate
among themselves through
• barrier synchronization,by

using the function __syncthreads();
• shared memory.

CUDA threads organization

Because all threads in a grid execute the same code, they rely on unique

coordinates assigned to them by the CUDA runtime system as built-in

preinitialized variables

• Block ID up to 3 dimensions:

(blockIdx.x, blockIdx.y, blockIdx.z)

• Thread ID within the block up to 3 dimensions:

(threadIdx.x, threadIdx.y, threadIdx.z)(threadIdx.x, threadIdx.y, threadIdx.z)

The exact organization of a grid is determined by the execution

configuration provided at kernel launch.

Two additional variables of type dim3 (C struct with 3 unsigned integer

fields) are declared:

• gridDim dimensions of the grid in terms of number of blocks

• blockDim dimensions of the block in terms of number of threads

Launching a kernel

A kernel must be called from the host with the following syntax:

__global__ void KernelFunc(…);
dim3 gridDim(100, 50); // 5000 thread blocks
dim3 blockDim(8, 8, 4); // 256 threads per block

//call the kernel
KernelFunc<<< gridDim, blockDim >>>(<arguments>);KernelFunc<<< gridDim, blockDim >>>(<arguments>);

All kernel calls are

asynchronous!

Typical CUDA grids contain

thousands to millions of
threads.

Thread ID computation

The build-in variables are

used to compute the global ID

of the thread, in order to

determine the area of data that

it is designed to work on.it is designed to work on.

• 1D:

� int id = blockDim.x * blockIdx.x + threadIdx.x;

• 2D:

� int iy = blockDim.y * blockIdx.y + threadIdx.y;

� int ix = blockDim.x * blockIdx.x + threadIdx.x;

� int id = iy * dimx + ix;

Kernel example

Function modifiers

Function

declaration

Executed

on the

Only callable

from the

CUDA extends C function declarations with three qualifier keywords.

__device__
(device functions)

device device

__global__
(kernel function)

device host

__host__
(host functions)

host host

Hierarchy of device memories

CUDA’s hierarchy of threads maps to a

hierarchy of memories on the GPU:

• Each thread has some registers,

used to hold automatic scalar

variables declared in kernel and

device functions, and a per-thread

private memory space used for

register spills, function calls, and C

automatic array variables

• Each thread block has a per-block

shared memory space used for inter-

thread communication, data sharing,

and result sharing in parallel

algorithms

• Grids of thread blocks share results in

global memory space

CUDA device memory model

on-chip memories:

� registers (~8kB) → SP

� shared memory (~16kB) → SM

� they can be accessed at very high speed
in a highly parallel manner.

per-grid memories:

� global memory (~4GB)

� long access latencies (hundreds of � long access latencies (hundreds of
clock cycles)

� finite access bandwith

� constant memory (~64kB)

� read only

� short-latency (cached) and high
bandwith when all threads
simultaneously access the same
location

� texture memory (read only)

� CPU can transfer data to/from all

per-grid memories.

Local memory is implemented as part of

the global memory, therefore has a long

access latencies too.

CUDA variable qualifiers

Variable declaration memory lifetime scope

Automatic scalar variables register kernel thread

Automatic array variables
__device__ __local__ local kernel thread

__device__ __shared__ shared kernel block

__device__ global application grid

__device__ __constant__ constant application grid

� Global variables are often used to pass information from one kernel to another.

� Constant variables are often used for providing input values to kernel functions.

Shared memory allocation

• Static modality
inside the kernel:
__shared__ float f[100];

• Dynamic modality
in the execution configuration of the kernel,in the execution configuration of the kernel,
define the number of bytes to be allocated per
block in the shared memory :

kernel<<<DimGrid, DimBlock, SharedMemBytes>>>(U);

while inside the kernel:
extern __shared__ float f[];

Device memory allocation

CUDA API functions to manage data allocation
on the device memory:

cudaMalloc(void** pointer, size_t nbytes)
� It allocates a part of the device global memory
� The first parameter is the address of a generic � The first parameter is the address of a generic

pointer variable that must point to the allocated
object
� it should be cast to (void**)!

� The second parameter is the size of the object to
be allocated, in terms of bytes

cudaFree(void* pointer)
� It frees the storage space of the object

cudaMemsetcudaMemset

cudaMemset (void * devPtr, int value, size_t count)

Fills the first count bytes of the memory area pointed

to by devPtr with the constant byte value value.to by devPtr with the constant byte value value.

Cuda version of the C memset() function.

devPtr - Pointer to device memory

value - Value to set for each byte of specified memory

count - Size in bytes to set

www.cineca.itwww.cineca.it 2424

Data transfer CPU-GPU

API blocking functions for data transfer between memories:

Destination source number of symbolic constant
data bytes indicating the direction

Constant memory

cudaMemcpyToSymbol(const char * symbol,
const void * src,
size_t count,
size_t offset,
enum cudaMemcpyKind kind)

symbol - symbol destination on device, it can either be a symbol - symbol destination on device, it can either be a
variable that resides in global or constant memory
space, or it can be a character string, naming a variable
that resides in global or constant memory space.

src - source memory address
count - size in bytes to copy
offset - offset from start of symbol in bytes
kind - type of transfer, it can be either

cudaMemcpyHostToDevice or
cudaMemcpyDeviceToDevice

Minimize transfersMinimize transfers

• Keep as much data as possible on the GPU

memory bandwith on GPU = 150 GB/s

memory bandwith on PCIe ~= 6 GB/s Minimize number of copies!

• Keep as much data as possible on the GPU

memory

• Sometimes for the GPU is cheaper to

recalculate some data rather than transfer them

from the CPU

Matrix- matrix multiplication

example

CUDA parallelization:

each thread computes an

element of P

P = M*N

Matrix- matrix multiplication

host code

void MatrixMultiplication(float* M, float *N, float *P, int width)
{

size_t size = width*width*sizeof(float);
float* Md, Nd, Pd;
// transfer M and N to the device memory
cudaMalloc((void**)&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMalloc((void**)&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
// allocate P on the device
cudaMalloc((void**)&Pd, size);
// kernel invocation
dim3 gridDim(1,1);
dim3 blockDim(width,width);
MNKernel<<<dimGrid, dimBlock>>>(Md,Nd,Pd,width);
// transfer P from the device to the host
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);
// free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree(Pd);

}

Matrix- matrix multiplication

device code

__global__ void MNKernel(float* Md, float *Nd, float *Pd,
int width)

{
// 2D thread ID
int col = threadIdx.x;
int row = threadIdx.y;

// Pvalue stores the Pd element that is computed by the// Pvalue stores the Pd element that is computed by the
// thread
float Pvalue = 0;
for (int k=0; k < width; k++)

Pvalue += Md[row * width + k] * Nd[k * width + col];

// write the matrix to device memory (each thread
// writes one element)
Pd[row * width + col] = Pvalue;

}

Threads execution

CUDA’s hierarchy of threads/memories maps

to the hierarchy of processors on the GPU:

• a GPU executes one or more kernel grids;

• a streaming multiprocessor (SM) executes one

or more thread blocks; or more thread blocks;

• a streaming processor (SP) in the SM

executes threads.

A maximum number of blocks can be assigned to each SM
(8 for Tesla T10)

The runtime system maintains a list of blocks that need to
execute and assigns new blocks to SMs as they complete
the execution of blocks previously assigned to them.

Transparent scalability

By not allowing threads in different blocks to

synchronize with each other, CUDA runtime system

can execute blocks in any order relative to each other.

This flexibility enables to execute the same application

code on hardware with different numbers of SM.

Resource limitations

Matrix- matrix multiplication

example

Limitation: a block can have up to 512 threads (for Tesla

T10). Therefore the previous implementation can

compute square matrices of order less than 32.

Improvement:Improvement:

• use more blocks by breaking matrix Pd into square tiles

• all elements of a tile are computed by a block of threads

• each thread still calculates one Pd element but it uses its

blockIdx values to identify the tile that contains its

element.

Matrix- matrix multiplication

example

__global__ void MNKernel(float* Md, float *Nd, float *Pd, int
width)

{
// 2D thread ID
int col = blockIdx.x*TILE_WIDTH + threadIdx.x;
int row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Pvalue stores the Pd element that is computed by the
thread
float Pvalue = 0;float Pvalue = 0;
for (int k=0; k < width; k++)
Pvalue += Md[row * width + k] * Nd[k * width + col];

Pd[row * width + col] = Pvalue;
}

Kernel invocation:

dim3 gridDim(width/TILE_WIDTH,width/TILE_WIDTH);
dim3 blockDim(TILE_WIDTH,TILE_WIDTH);
MNKernel<<<dimGrid, dimBlock>>>(Md,Nd,Pd,width);

Matrix- matrix multiplication

example

Which is the optimal dimension of the block (i.e. TILE_WIDTH)?

Knowing that each SM of a Tesla T10 can have up to 1024
threads, we have

• 8x8 = 64 threads 1024/64 = 12 blocks to fully occupy an
SM; but we are limited to 8 blocks in each SM therefore we SM; but we are limited to 8 blocks in each SM therefore we
will end up with only 64x8 = 512 threads in each SM.

• 16x16 = 256 threads 1024/256 = 4 blocks

we will have full thread capacity in each SM.

• 32x32 = 1024 threads per block which exceed the limitation of
up to 512 threads per block.

TILE_WIDTH = 16 !

Global memory access efficiency

Although having many threads available for execution
can theoretically tolerate long memory access latency,
one can easily run into a situation where traffic
congestion prevents all but few threads from making
progress, thus rendering some SM idle!

A common strategy for reducing global memory trafficA common strategy for reducing global memory traffic
(i.e. increasing the number of floating-point operations
performed for each access to the global memory) is to
partition the data into subsets called tiles such that
each tile fits into the shared memory and the kernel
computations on these tiles can be done independently
of each other.

In the simplest form, the tile dimensions equal those of
the block.

Matrix- matrix multiplication

example

In the previous kernel:
thread(x,y) of block(0,0) access the elements of Md row x and Nd

column y from the global memory.
thread(0,0) and thread(0,1) access the same Md row 0

What if these threads collaborate so that the elements of this row are
only loaded from the global memory once? We can reduce the total
number of accesses to the global memory by half!

Basic idea:
• to have the threads within a block collaboratively load Md and Nd

elements into the shared memory before they individually use these
elements in their dot product calculation.

• The dot product performed by each thread is now divided into
phases: in each phase all threads in a block collaborate to load a tile
of Md and a tile of Nd into the shared memory and use these values
to compute a partial product. The dot product would be performed in
width/TILE_WIDTH phases.

• the reduction of the accesses to the global memory is by a factor of
TILE_WIDTH.

Matrix- matrix multiplication

example

1 phase → 1 tile

For each phase:

� Each thread of the block loads

1 element of a tile of M

1 element of a tile of N

at the end the entire tile is loaded in the shared

memory and is visible to all threads of the block.memory and is visible to all threads of the block.

� Each thread compute the partial dot product

involving the elements of the current tile

Matrix- matrix multiplication

example

__global__ void MNKernel(float* Md, float *Nd, float *Pd, int width)
{

__shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
__shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

// 2D thread ID
int tx = threadIdx.x; int ty = threadIdx.y;
int col = blockIdx.x*TILE_WIDTH + tx;
int row = blockIdx.y*TILE_WIDTH + ty;

float Pvalue = 0;float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
for (int m=0; m < width/TILE_WIDTH; m++)
{//collaborative loading of Md and Nd tiles into shared memory

Mds[ty][tx] = Md[row*width + (m*TILE_WIDTH + tx)];
Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*width + col];
__syncthreads();

for (int k=0; k < TILE_WIDTH; k++)
Pvalue += Mds[ty][k] * Nds[k][tx];

__syncthreads();
}

Pd[row * width + col] = Pvalue;
}

Memory as a limiting factor to

parallelism

The limited amount of CUDA memory limits the number of
threads that can simultaneously reside in the SM!

For the matrix multiplication example, shared memory can
become a limiting factor:

TILE_WIDTH = 16 each block requires 16x16x4 = 1kB of storage for MdsTILE_WIDTH = 16 each block requires 16x16x4 = 1kB of storage for Mds
+ 1kB for Nds
2kB of shared memory per block

The 16-kB shared memory allows 8 blocks to simultaneously reside

in an SM. Ok!

But the maximum number of threads per SM is 1024 (for Tesla T10)

only 1024/256 = 4 blocks are allowed in each SM

only 4 x 2kB = 8kB of the shared memory will be used.

Hint: Use occupancy calculator

Thread scheduling

Once a block is assigned to a SM,

it is further partitioned into 32-thread

units called warps.

Warps are scheduling units in SM:

all threads in a same warp execute

the same instruction when the warp

is selected for execution (Single-Instruction, Multiple-Thread)

Block of threads warps
multiprocessor

Threads often execute long-latency operations:

� global memory access

� pipelined floating point arithmetics

� branch instructions

It is convenient to assign a large number of warps to each SM, because
the long waiting time of some warp instructions is hidden by executing
instructions from other warps. Therefore the selection of ready warps for
execution does not introduce any idle time into the execution timeline
(zero-overhead thread scheduling).

Control flowControl flow

The hardware executes an

instruction for all threads in

the same warp before moving

to the next instruction (SIMT).

It works well when all threads

within a warp follow the same

control flow path when working control flow path when working

their data.

When threads in the same warp

follow different paths of control

flow, we say that these threads

diverge in their execution.

For an if-then-else construct the

execution of the warp will require

multiple passes through the

divergent paths.
Try to avoid if-then-else !

An if-then-else construct can result in thread divergence
when its decision condition is based on threadIdx
values.

A sum reduction algorithm extracts a single value from an
array of values in order to sum them. Within a block
exploit the shared memory!

Vector reduction example

(within a thread block)

There is thread divergence!

Vector reduction example

Instead of adding
neighbor elements
in the first round,
add elements that
are half a section
away from each
other and so on.other and so on.

No divergence until partial sums
involve less than 32 elements
(because of the warp size)

Error checking

All runtime functions return an error code of type cudaError_t.

No error is indicated as cudaSuccess.

char* cudaGetErrorString(cudaError_t code)

returns a string describing the error:

For asynchronous functions (i.e. kernels, asynchronous For asynchronous functions (i.e. kernels, asynchronous
copies) the only way to check for errors just after the call is
to synchronize: cudaDeviceSynchronize()

Then the following function returns the code of the last error:

cudaError_t cudaGetLastError()

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

Reference

http://developer.nvidia.com/cuda

• CUDA Programming Guide

• CUDA Zone – tools, training, webinars and more

NVIDIA Books:

• “Programming Massively Parallel Processors”,

D.Kirk - W.W. Hwu

• “CUDA by example”, J.Sanders - E. Kandrot

