
Introduction
Directives

Runtime Library
Environment Variables

Introduction to OpenMP

Gian Franco Marras1 Massimiliano Culpo1

1CINECA - SuperComputing Applications and Innovation Department - SCAI, Via
Magnanelli 6/3, 40033 Casalecchio di Reno, Bologna (Bo),

g.marras@cineca.it,m.culpo@cineca.it

October 25, 2012

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Memory Architectures
OpenMP

Introduction

1 Introduction
Memory Architectures
OpenMP

Pros & Cons
Releases
Execution model
Conditional Compilation
OpenMP Compilers

2 Directives
Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

3 Runtime Library

4 Environment Variables

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Memory Architectures
OpenMP

Shared Memory System

Shared memory:

Refers to a large block of RAM that can be accessed by several
different CPUs in a multiple-processor computer system.

Usually the system is a Simmetric MultiProcessor (SMP). SMP
involves a multiprocessor computer hardware architecture where two
or more identical processors are connected to a single shared main
memory.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Memory Architectures
OpenMP

OpenMP

The OpenMP API provides a relaxed-consistency, shared-memory
model.

All OpenMP threads have access to a place to store and to retrieve
variables, called the memory.

Each thread also has access to another type of memory that must
not be accessed by other threads, called threadprivate memory.

The OpenMP Application Program Interface (API) supports
multi-platform shared-memory parallel programming in C/C++ and
Fortran on all architectures, including Unix platforms and Windows
NT platforms.

OpenMP is a portable, scalable model that gives shared-memory
parallel programmers a simple and flexible interface for developing
parallel applications for platforms ranging from the desktop to the
supercomputer.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Memory Architectures
OpenMP

Pros & Cons

Pros

easier to program and debug;

directives can be added incrementally - gradual parallelization;

can still run the program as a serial code;

serial code statements usually don’t need modification.

Cons

can only be run in shared memory computers;

mostly used for loop parallelization;

traffic between CPU and memory increases with the number of
CPUs;

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Memory Architectures
OpenMP

Releases

October 1997: Fortran 1.0;

1998: C/C++ 1.0;

June 2000: Fortran 2.0;

April 2002: C/C++ 2.0;

2008-2009: 3.0 Fortran and C/C++.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Memory Architectures
OpenMP

Execution model

OpenMP consists of a set of:

Compiler directives;

Runtime library routines;

Environment variables.

The OpenMP API uses the fork-join model of parallel execution.

An OpenMP program begins as a single thread of execution, called
the initial thread. The initial thread executes sequentially until
encounters a parallel construct.

The initial thread creates a team of threads and becomes the
master of the new team. Beyond the end of the parallel construct,
only the master thread resume execution.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Memory Architectures
OpenMP

Conditional Compilation

In implementations that support a preprocessor, the OPENMP macro
name is defined to have the decimal value yyyymm where yyyy and mm
are the year and month designations of the version of the OpenMP API
that the implementation supports.

C/C++:

#ifdef _OPENMP

printf("Compiled with OpenMP support:%d",_OPENMP);

#else

printf("Compiled for serial execution.");

#endif

Fortran:

!$ print *,"Compiled with OpenMP support",_OPENMP

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Memory Architectures
OpenMP

GNU:

(Version >= 4.3.2) Compile with -fopenmp For Linux, Solaris, AIX,
MacOSX, Windows.

IBM:

Compile with -qsmp=omp for Windows, AIX and Linux.

Sun Microsystems:

Compile with -xopenmp for Solaris and Linux.

Intel:

Compile with -Qopenmp on Windows, or just -openmp on Linux or
Mac Emit useful information to stderr. -openmp-report2

Portland Group Compilers:

Compile with -mp Emit useful information to stderr. -Minfo=mp

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Directives

OpenMP directives for C/C++ are specified with the pragma
preprocessing directive.
The syntax of an OpenMP directive is formally specified as follows:

C/C++:

#pragma omp directive-name [clause[[,]clause]...]

OpenMP directives for Fortran are specified as follows:

Fortran:

$omp directive-name [clause[[,]clause]...]

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Parallel Construct

Start parallel execution;

A team of threads is created to execute the parallel region;

The thread that encountered the parallel construct becomes the
master thread of the new team with a thread number zero.

There is an implicit barrier at the end of the construct;

Within a parallel region, thread numbers uniquely identify each
thread. Thread numbers are consecutive whole numbers ranging
from zero for the master thread up to one less than the number of
threads in the team.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

A first program in Fortran:

PROGRAM HELLO

INTEGER VAR1, VAR2, VAR3

!Serial code

Print *, "Hello World!!!"

!Resume serial code

END

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

A first program in Fortran:

PROGRAM HELLO

INTEGER VAR1, VAR2, VAR3

!Serial code

!$OMP PARALLEL

Print *, "Hello World!!!"

!$OMP END PARALLEL

!Resume serial code

END

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

A first program in C:

int main ()

{

int var1, var2, var3;

Serial code

! Beginning of parallel region. Fork a team of threads.

! Specify variable scoping

{

printf(‘‘Hello world\n’’);

}

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

A first program in C:

int main ()

{

int var1, var2, var3;

Serial code

! Beginning of parallel region. Fork a team of threads.

! Specify variable scoping

#pragma omp parallel

{

printf(‘‘Hello world\n’’);

}

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Worksharing Construct

A worksharing construct distributes the execution of the associated
region among the members of the team that encounters it.

A worksharing region has no barrier on entry; however, an implied
barrier exists at the end of the worksharing region.

If a nowait clause is present, an implementation may omit the
barrier at the end of the worksharing region.

The OpenMP API defines the following worksharing constructs:

loop construct;

sections construct;

single construct;

workshare contruct.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Loop construct

The loop construct specifies that the iterations of one or more
associated loops will be executed in parallel by threads in the team. The
iterations are distributed across threads that already exist in the team
executing the parallel region to which the loop region binds.

C/C++:

#pragma omp for [clause[[,] clause] ...]

for(i=0;...)

Fortran:

!$omp do [clause[[,] clause] ...]

do i=0,n

...

enddo

[!$omp end do [nowait]]

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Loop construct

Loop in Fortran:

integer :: i,n=200

real :: a(n),b(n),c(n)

do i=1, n

a(i) = b(i) + c(i)

enddo

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Loop construct

Loop in Fortran:

integer :: i,n=200

real :: a(n),b(n),c(n)

!$OMP PARALLEL

!$OMP DO

do i=1, n

a(i) = b(i) + c(i)

enddo

!$OMP END DO

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Loop construct

Loop in C:

int main ()

{

int i, n, var2, var3;

...

Serial code

...

{

for(i=1; i<=n; i++)

a[i] = b[i] + c[i]

}

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Loop construct

Loop in C:

int main ()

{

int i, n, var2, var3;

...

Serial code

...

#pragma omp parallel

{

#pragma omp for

for(i=1; i<=n; i++)

a[i] = b[i] + c[i]

}

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Loop construct

Requirements for Loop Parallelization:

no dependencies between loop indicies;

an element of an array is assigned to by at most one iteration;

no loop iteration reads array elements modified by any other
dependency;

due to overhead of parallelization - use only on loops where
individual iterations take a long time.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Loop construct

Example of code with NO data dependencies

Fortran:

!$omp parallel do

do i = 1, n

a(i) = b(i) + c(i)

enddo

C/C++:

#pragma omp parallel for

for(i=1; i<=n; i++)

a[i] = b[i] + c[i]

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Loop construct

Example of code with data dependencies

Fortran:

do i = 2, 5

a(i) = a(i) + a(i-1)

enddo

C/C++:

for(i=2; i<=5; i++)

a[i] = a[i] + a[i-1];

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Scheduling

Specifies how iterations of the associated loops are divided into
contiguous non-empty subsets, called chunks, and how these chunks are
distributed among threads of the team.

Static:

iterations are divided into chunks of size chunk size, and the chunks are
assigned to the threads in the team in a round-robin fashion in the order
of the thread number.

Dynamic:

iterations are distributed to threads in the team in chunks as the threads
request them. Each thread executes a chunk of iterations, then requests
another chunk, until no chunks remain to be distributed.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Scheduling

Guided:

the iterations are assigned to threads in the team in chunks as the
executing threads request them. Each thread executes a chunk of
iterations, then requests another chunk, until no chunks remain to be
assigned. The chunk decrease with time.

Runtime:

the decision regarding scheduling is deferred until run time.

Auto:

the decision regarding scheduling is delegated to the compiler and/or
runtime system.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Scheduling

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Sections

The sections construct is a noniterative worksharing construct that
contains a set of structured blocks that are to be distributed among and
executed by the threads in a team.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Sections

Fortran:

!$OMP PARALLEL

...

call subrA(c,d)

call subrB(e,f)

call subrC(g,h,i)

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Sections

Fortran:

!$OMP PARALLEL

...

!$OMP SECTIONS

!$OMP SECTION

call subrA(c,d)

!$OMP SECTION

call subrB(e,f)

!$OMP SECTION

call subrC(g,h,i)

!$OMP END SECTIONS

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Sections

C/C++:

#pragma omp parallel

{

...

{

A=subr_A(c,d)

B=subr_B(e,f)

C=subr_c(g,h,i)

}

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Sections

C/C++:

#pragma omp parallel

{

...

#pragma omp sections

{

#pragma omp section

A=subr_A(c,d)

#pragma omp section

B=subr_B(e,f)

#pragma omp section

C=subr_c(g,h,i)

}

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Single

The single construct specifies that the associated structured block is
executed by only one of the threads in the team (not necessarily the
master thread). The other threads in the team, which do not execute the
block, wait at an implicit barrier at the end of the single construct unless
a nowait clause is specified.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Single

Fortran:

!$OMP PARALLEL

...

read *, a

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Single

Fortran:

!$OMP PARALLEL

...

!$OMP SINGLE

read *, a

!$OMP END SINGLE

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Single

C/C++:

#pragma omp parallel

{

...

{

printf(‘‘Beginning work’’);

}

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Single

C/C++:

#pragma omp parallel

{

...

#pragma omp single

{

printf(‘‘Beginning work’’);

}

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Master & Sinchronization constructs

Master:

the master construct.

Sinchronization constructs:

the critical construct.

the barrier construct.

the atomic construct.

the ordered construct.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Master

The master construct specifies a structured block that is executed by
the master thread of the team. There is no implied barrier either on entry
to, or exit from, the master construct.

Fortran:

!$OMP PARALLEL

...

read , a

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Master

The master construct specifies a structured block that is executed by
the master thread of the team. There is no implied barrier either on entry
to, or exit from, the master construct.

Fortran:

!$OMP PARALLEL

...

!$OMP MASTER

read , a

!$OMP END MASTER

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Master

C/C++:

#pragma omp parallel

{

...

{

printf(‘‘Beginning work’’);

}

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Master

C/C++:

#pragma omp parallel

{

...

#pragma omp master

{

printf(‘‘Beginning work’’);

}

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Barrier

The barrier construct specifies an explicit barrier at the point at which
the construct appears.

Fortran:

!$OMP PARALLEL

...

X=FUNC_A(X)

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Barrier

The barrier construct specifies an explicit barrier at the point at which
the construct appears.

Fortran:

!$OMP PARALLEL

...

X=FUNC_A(X)

!$OMP BARRIER

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Critical

The critical construct restricts execution of the associated structured
block to a single thread at a time. An optional name may be used to
identify the critical construct.

Fortran:

!$OMP PARALLEL

...

X=FUNC_A(X)

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Critical

The critical construct restricts execution of the associated structured
block to a single thread at a time. An optional name may be used to
identify the critical construct.

Fortran:

!$OMP PARALLEL

...

!$OMP CRITICAL FOO

X=FUNC_A(X)

!$OMP END CRITICAL FOO

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Critical

All critical constructs without a name are considered to have the same
unspecified name.

C/C++:

#pragma omp parallel

{

...

{

x=subr_A(x)

}

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Critical

All critical constructs without a name are considered to have the same
unspecified name.

C/C++:

#pragma omp parallel

{

...

#pragma omp critical foo

{

x=subr_A(x)

}

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Atomic

The atomic construct ensures that a specific storage location is updated
atomically, rather than exposing it to the possibility of multiple,
simultaneous writing threads.

Fortran:

!$OMP PARALLEL

...

X=X+1

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Atomic

The atomic construct ensures that a specific storage location is updated
atomically, rather than exposing it to the possibility of multiple,
simultaneous writing threads.

Fortran:

!$OMP PARALLEL

...

!$OMP ATOMIC

X=X+1

...

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Atomic

C/C++:

#pragma omp parallel

{

...

X++;

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Atomic

C/C++:

#pragma omp parallel

{

...

#pragma omp atomic

X++;

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Ordered

The ordered construct specifies a structured block in a loop region that
will be executed in the order of the loop iterations. This sequentializes
and orders the code within an ordered region while allowing code outside
the region to run in parallel.

Fortran:

!$OMP PARALLEL

!$OMP DO

DO i=1,N

A(i)=...

PRINT *,a(i)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Ordered

The ordered construct specifies a structured block in a loop region that
will be executed in the order of the loop iterations. This sequentializes
and orders the code within an ordered region while allowing code outside
the region to run in parallel.

Fortran:

!$OMP PARALLEL

!$OMP DO ORDERED

DO i=1,N

A(i)=...

!$OMP ORDERED

PRINT *,a(i)

!$OMP END ORDERED

ENDDO

!$OMP END DO ORDERED

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Ordered

C/C++:

#pragma omp parallel

{

...

#pragma omp for

for (i=0;i<n;++i)

{

a[i] = b[i] + 1.0;

printf(‘‘%f\n‘‘,a[i]);

}

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Ordered

C/C++:

#pragma omp parallel

{

...

#pragma omp for ordered

for (i=0;i<n;++i)

{

a[i] = b[i] + 1.0;

#pragma omp ordered

printf(‘‘%f\n‘‘,a[i]);

}

...

}

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

OpenMP Memory Model

OpenMP provides a consistent shared-memory model. All threads
have access to the main memory to retrieve shared variables.

Each thread also has access to another type of memory that cannot
be accessed by another threads, called thread private memory.

A directive that accepts data-sharing attribute clauses determines
two kinds of access to variables used in the directive’s associated
structured block: shared and private.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Data-Sharing Attribute Clauses

C/C++:

Variables with automatic storage duration that are declared in a
scope inside the construct are private.

Objects with dynamic storage duration are shared.

Variables with static storage duration that are declared in a scope
inside the construct are shared.

Formal arguments of called routines in the region that are passed by
reference inherit the data-sharing attributes of the associated actual
argument.

Other variables declared in called routines in the region are private.

The loop iteration variable in the associated for-loop of a for or
parallel for construct is private.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Fortran

Variables and common blocks appearing in threadprivate directives
are threadprivate.

The loop iteration variable(s) in the associated do-loop(s) of a do
or parallel do construct is(are) private.

A loop iteration variable for a sequential loop in a parallel construct
is private in the innermost such construct that encloses the loop.

Assumed-size arrays are shared.

Local variables declared in called routines in the region and that
have the save attribute, or that are data initialized, are shared unless
they appear in a threadprivate directive.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Fortran

Variables belonging to common blocks, or declared in modules, and
referenced in called routines in the region are shared unless they
appear in a threadprivate directive.

Dummy arguments of called routines in the region that are passed
by reference inherit the data-sharing attributes of the associated
actual argument.

Implied-do indices and other local variables declared in called
routines in the region are private.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Data-Sharing Attribute Clauses

integer :: i=5,n=200

real :: tmp=7

!$OMP PARALLEL

!$OMP DO

do i=1, n

tmp = func(b(i))

a(i) = b(i) + tmp

enddo

!$OMP END DO

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Data-Sharing Attribute Clauses

integer :: i=5,n=200

real :: tmp=7

!$OMP PARALLEL PRIVATE(tmp)

!$OMP DO

do i=1, n

tmp = func(b(i))

a(i) = b(i) + tmp

enddo

!$OMP END DO

!$OMP END PARALLEL

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Data-Sharing Attribute Clauses

Shared:

declares a list of one or more items to be shared by threads generated by
a parallel construct.

Private:

declares one or more list items to be private to a task. No other thread
can access this data. Changes can only visible to the thread owning the
data.

Firstprivate:

declares one or more list items to be private to a task, and initializes each
of them with the value that the corresponding original item has when the
construct is encountered.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Data-Sharing Attribute Clauses

Lastprivate:

declares one or more list items to be private to an implicit task, and
causes the corresponding original list item to be updated after the end of
the region.

!$omp do

do i = 1,n-1

a(i) = b(i+1)

enddo

!$omp end do

print *, i

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Data-Sharing Attribute Clauses

Lastprivate:

declares one or more list items to be private to an implicit task, and
causes the corresponding original list item to be updated after the end of
the region.

!$omp do lastprivate(i)

do i = 1,n-1

a(i) = b(i+1)

enddo

!$omp end do

print *, i

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Data-Sharing Attribute Clauses

Default:

The default clause explicitly determines the data-sharing attributes of
variables that are referenced in a parallel or task construct and would
otherwise be implicitly determined. Only a single default clause may be
specified on a parallel directive.

C/C++:

default(shared | none)

Fortran:

default(private | firstprivate | shared | none)

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Data-Sharing Attribute Clauses

!$omp do

do i = 1,n

x = x + a(i)

enddo

!$omp end do

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Parallel Construct
Worksharing Construct
Master & Sinchronization constructs
Data-Sharing Attribute Clauses

Data-Sharing Attribute Clauses

!$omp do reduction(+:x)

do i = 1,n

x = x + a(i)

enddo

!$omp end do

Reduction:

The reduction clause specifies an operator and one or more list items.
For each list item, a private copy is created in each implicit task, and is
initialized appropriately for the operator. After the end of the region, the
original list item is updated with the values of the private copies using
the specified operator.

Support for most arithmetic and logical operators
+, ∗,−, .MIN ., .MAX ., .AND., .OR ., ...

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Runtime Library

OpenMP provides several user-callable functions to control and query
parallel environment.

The Runtime Libraries take precedence over the corrisponding
environment variables;

Recommended to use under control of conditional compilation
(#ifdef OPENMP);

C/C++ programs need to include <omp.h>;

Fortran program may want to use “USE OMP LIB” or include
“omp lib.h”.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Runtime Library

omp get num threads

num_threads=omp_get_num_threads():

Gets number of threads in team;

omp get thread num

thread_id=omp_get_thread_num():

Gets thread ID;

omp get wtime

time=omp_get_wtime():

Return elapsed wall clock time in seconds.

G.F. Marras, M. Culpo Introduction to OpenMP

Introduction
Directives

Runtime Library
Environment Variables

Environment Variables

OMP NUM THREADS:

sets the number of threads to use for parallel regions;

OMP SCHEDULE:

controls the schedule type and chunk size of all loop directives that have
the schedule type runtime.

OMP STACKSIZE:

specifies the size of the stack for threads created by the OpenMP
implementation.

sh:

$ export OMP_NUM_THREADS=8

$ export OMP_SCHEDULE="guided,4"

G.F. Marras, M. Culpo Introduction to OpenMP

	Introduction
	Memory Architectures
	OpenMP

	Directives
	Parallel Construct
	Worksharing Construct
	Master & Sinchronization constructs
	Data-Sharing Attribute Clauses

	Runtime Library
	Environment Variables

