
The affinity model

Gabriele Fatigati

CINECA Supercomputing group
g.fatigati@cineca.it

Gabriele Fatigati The affinity model 1 / 26

Outline

1 NUMA architecture

2 Affinity, what is?

3 Affinity, how to implement

4 HWLOC

Gabriele Fatigati The affinity model 2 / 26

NUMA architecture

Definition

NUMA Non-Uniform Memory Access, the memory is divided in local
(faster) and remote (slower) areas

Core 0,1,2,3,4,5 access faster in socket 0 memory area, slower in
socket 1 memory area.

Core 4,5,6,7,8,9 access faster in socket 1 memory area, slower in
socket 0 memory area.

Gabriele Fatigati The affinity model 3 / 26

Definition

Physical proximity: two cores are physically near when there is a physical
interconnection between them. (by BUS, cache or other).
Two threads are near when they are placed on two near cores.

Gabriele Fatigati The affinity model 4 / 26

Affinity, what is?

Definition

The affinity is a modification of the native OS queue scheduling algorithm.
(rif: wikipedia)

Execution bind: indicates a preferred core where process/thread will
run

Memory bind: indicates a preferred memory area where memory
pages will bound (local areas in NUMA machine)

Migrating process/thread from one core to another, cache and memory
locality is lost.

Gabriele Fatigati The affinity model 5 / 26

Usually, HPC cluster doesn’t have an HPC-oriented kernel, but they have a
general purpouse kernel like Linux.

The kernel moves process among cores to optimize the usage of them,
assuming that on the node there are many processes besides HPC
processes. In non HPC context should be fine, but on HPC cluster can
limit the peformance.

Gabriele Fatigati The affinity model 6 / 26

In NUMA architecture can be happen also with remote memory:

Gabriele Fatigati The affinity model 7 / 26

numactl

Control NUMA policy for processes or shared memory. Runs processes
with a specific NUMA scheduling or memory placement policy.

–hardware: Show NUMA policy settings of the current process.

available: 2 nodes (0-1)

node 0 cpus: 0 1 2 3 4 5 6 7

node 0 size: 32733 MB

node 0 free: 17837 MB

node 1 cpus: 8 9 10 11 12 13 14 15

node 1 size: 32767 MB

node 1 free: 1542 MB

node distances:

node 0 1
0: 10 20
1: 20 10

Gabriele Fatigati The affinity model 8 / 26

–show policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cpubind: 0 1

nodebind: 0 1

membind: 0 1

This machine has 16 cores, arranged into 2 groups (nodes), with each
group of 8 having access to local memory region of 32 GB (64 GB total)

–cpunodebind=nodes, Only execute process on the CPUs of nodes.

Gabriele Fatigati The affinity model 9 / 26

numactl –cpunodebind=0 –membind=0,1
Run process on node 0 with memory allocated on node 0 and 1.

numactl –physcpubind=2
Run process only on physical CPU having id 2 and allocate the
memory on the same NUMA node where the process is running.

Gabriele Fatigati The affinity model 10 / 26

–touch Touch pages to enforce policy early. Default is do not touch
them, the policy is applied when an applications maps and accesses to
a single page.

When a processor/thread allocates memory, the memory is not really
allocated immediately. The memory pages allocation is done on the
first access (usually on the initialization)

int*array=(int*)malloc(100*sizeof(int));

// not really allocated

for(int i=0; i \(< \) 100; i++)

1 array[i] = 0; // now is allocated

Gabriele Fatigati The affinity model 11 / 26

Thread affinity and OpenMPI

Is it possible to bind using MPI environment, like OpenMPI:

-bind-to-core Bind processes to cores.

-bind-to-socket Bind processes to processor sockets.

The default is do not bind processes.

Binding policies are referred to a node.

Gabriele Fatigati The affinity model 12 / 26

Thread affinity and Intel MPI

Intel MPI can bind threads to physical processing units by using
KMP AFFINITY environment variable.

KMP AFFINITY=mode

Gabriele Fatigati The affinity model 13 / 26

Compact mode

KMP AFFINITY=compact. Specifying compact assigns the OpenMP
thread <n>+1 to a free thread context as close as possible to the thread
context where the <n> OpenMP thread was placed. If two threads shares
the same data in a cache, put them near can give advantages.

Gabriele Fatigati The affinity model 14 / 26

Scatter mode

KMP AFFINITY=scatter. Specifying scatter distributes the threads as
evenly as possible across the entire system. scatter is the opposite of
compact
Useful when the cache concurrency bewteen threads is high

Gabriele Fatigati The affinity model 15 / 26

Explicit mode

Instead of allowing the library to detect the hardware topology and
automatically assign OpenMP threads to processing elements, the user
may explicitly specify the assignment by using a list of operating system
(OS) processor (proc) IDs.

However, this requires knowledge of which processing elements the OS
proc IDs represent.

Gabriele Fatigati The affinity model 16 / 26

KMP AFFINITY=”granularity=fine,proclist=[3,0,{1,2},{1,2}],explicit”

Gabriele Fatigati The affinity model 17 / 26

Thread affinity and GCC compiler

On GCC, thread binding is managed by using GOMP CPU AFFINITY
environment variable (requires OpenMP 3.0 or more)

GOMP CPU AFFINITY=”0 3 1-2 4-15:2”
Bind the initial thread to CPU 0, the second to CPU 3, the third to
CPU 1, the fourth to CPU 2, the fifth to CPU 4, the sixth can be
placed on CPU 6, 8, 10, 12 or 14

Gabriele Fatigati The affinity model 18 / 26

Thread affinity and Linux

sched setaffinity is a function that sets a processor’s affinity to run on a
given processor, by using a processors mask.

#include <sched.h>

#include <iostream>

#include <stdlib.h>

using namespace std;

int main (int argc, char* argv[])

{

cpu_set_t mask;

unsigned int len = sizeof(mask);

CPU_ZERO(&mask);

CPU_SET(2,&mask); // set core 2, processor mask = 0010

sched_setaffinity(getpid(), len, &mask);

// process will run on CPU 2

}

Gabriele Fatigati The affinity model 19 / 26

OpenMP standard

Starting from 3.1 version OpenMP implements, a binding procedure
throught OMP PROC BIND environment variable. If true, the execution
environment should not move OpenMP threads between processors. The
behaviour is implementation defined. If false, the execution environment
may move OpenMP threads between processors.

Gabriele Fatigati The affinity model 20 / 26

Thread affinity suggested option: HWLOC

HWLOC stands for HardWare LOCality, library to get many information
about the machine like NUMA nodes, shared caches, processor sockets,
processor cores and processor units. These information are very useful to
bind processor/threads.

Portable on many OS like Linux, AIX, Darwin, Solaris, Windows, FreeBSD.

Gabriele Fatigati The affinity model 21 / 26

PU (Processing Unit)

In HWLOC, the PU is The smallest processing element that can be
represented by a hwloc object. It may be a single- core processor, a core of
a multicore processor, or a single thread in SMT processor.

Gabriele Fatigati The affinity model 22 / 26

hwloc_topology_t topology;

hwloc_obj_t core;

hwloc_cpuset_t set;

int pu_id = 4; // process will bound on core 4

hwloc_topology_init(&topology);

hwloc_topology_load(topology);

core = hwloc_get_obj_by_type(machine_topology->topology,

HWLOC_OBJ_PU, pu_id);

set = hwloc_bitmap_dup(core->cpuset);

hwloc_bitmap_singlify(set); // keep a single index among those set

hwloc_set_cpubind(machine_topology->topology, set, 0);

// some work

hwloc_bitmap_free(set);

Gabriele Fatigati The affinity model 23 / 26

hwloc set cpubind

The most important funcion, used to bind a process/thread to a specific
PU

HWLOC CPUBIND PROCESS Bind all threads of the current
(possibly) multithreaded process.

HWLOC CPUBIND THREAD Bind current thread of current process.

HWLOC CPUBIND STRICT The process will never execute on other
CPUs than the designates CPUs

HWLOC CPUBIND NOMEMBIND Avoid any effect on memory
binding.

Gabriele Fatigati The affinity model 24 / 26

Memory binding with hwloc

hwloc_set_membind(hwloc_topology_t topology,

hwloc_const_cpuset_t cpuset,

hwloc_membind_policy_t policy,

int flags)

Bind the already-allocated memory of the current process or thread to
prefer the NUMA node near the specified physical cpuset

Gabriele Fatigati The affinity model 25 / 26

Memory binding trap

/* imagine two thread, the first one bound on node 0,

the second one allocated on node 1 */

int* array = (int*)malloc(1000*sizeof(int));

#pragma omp parallel

{

int tid = omp_get_thread_num();

if(tid==1) {

for(int i=0; i \(< \) 100; i++)

array[i] = 0; // now is intialized

}

}

Array is completely bound on node 1, since thread 1 is bound on it. If
thread 0 want to use it, memory pages will be remote so the access is
more slow.

Gabriele Fatigati The affinity model 26 / 26

	NUMA architecture
	Affinity, what is?
	Affinity, how to implement
	HWLOC

