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 Multi-node SMP (Symmetric Multiprocessor) 
connected by and interconnection network. 

 Each node is mapped (at least) one process MPI 
and OpenMP threads more. 

 

 



 Pure MPI Pro: 
High scalability 

High portability 

No false sharing 

Scalability out-of-node 

 Pure MPI Con: 
Hard to develop and debug. 

Explicit communications 

Coarse granularity 

Hard to ensure load balancing 
  

 

Pure OpenMP Pro: 
Easy to deploy (often) 

Low latency 

Implicit communications 

Coarse and fine granularity 

Dynamic Load balancing  

Pure OpenMP Con: 
Only on shared memory machines 

Intranode scalability  

Possible long waits for unlocking 
data 

Undefined thread ordering 
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 MPI+OpenMP hybrid paradigm is the trend for clusters 
with SMP architecture. 

Elegant in concept: use OpenMP within the node and MPI 
between nodes, in order to have a good use of shared 
resources. 

 Avoid additional communication within the MPI node. 

 OpenMP introduces fine-granularity. 

 The two-level parallelism introduces other problems 

 Some problems can be reduced by lowering MPI procs 
number 

 If the problem is suitable, the hybrid approach can have 
better performance than pure MPI or OpenMP codes. 
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Each MPI process needs to allocate some extra memory to manage 

communications and MPI enviroment.  

 

Threads uses less memory than process. No extra memory => shared 

memory 

Example: one node having 8 cores and 32 GB. Two ways: 

Pure MPI: 8 MPI process, 4 GB  for each 

Pure MPI: 1 MPI process, 32 GB  

Hybrid: 1 MPI process, 8 threads. 32 GB shared per process, 4  GB  per 

thread. 

Optimizing the memory usage 



 OpenMP has lower scalability because of locking 
resources while MPI has not potential scalability limits. 

 All threads are idle except ones during an MPI 
communication 

Need overlap computation and communication to 
improve performance 

Critical section for shared variables 

 Overhead of thread creation 

 Cache coherency and false sharing. 

 Pure OpenMP code is generally slower than pure MPI code 

 Few optimizations by OpenMP compilers compared to MPI 
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#pragma omp parallel for 

shared(a) schedule(static,1) 

for (int i=0; i<n; i++) 

       a[i] = i; 

 

Suppose that each cache line consist 

of 4 elements and you are using 4 

threads 

 

Each thread store: 

 Thread ID   Stores 

    0         a[0] 

    1         a[1] 

    2         a[2] 

    3         a[3] 

    0         a[4] 

    ...        ... 

Assuming that a[0] is the beginning of the cache line,  

we have 4 false sharing 

The same for a[4]...,a[7] 
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 The cache uses the principle of data spatial proximity 

 Concurrent updates to individual elements of the same 

threads from different cache line invalidate the entire cache 

line. 

 Once the cache line is marked as invalid, subsequent 

threads are forced to fetch the data from main memory, to 

ensure cache coherency. 

 



 This happens because the cache coherence is cache line 
based, not on individual item 

 A cache that load a single element would not apply 
spatial locality, and therefore, any new data would 
require fetch from the main memory 

 Read-only data does not have this problem 
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 call MPI_INIT (ierr) 
 call MPI_COMM_RANK (…) 
 call MPI_COMM_SIZE (…) 
  …  some computation and MPI communication 
  call OMP_SET_NUM_THREADS(4) 
 !$OMP PARALLEL  
 !$OMP DO 

    do i=1,n 
        … computation 
    enddo 
  !$OMP END  DO  
  !$OMP END  PARALLEL 
  …  some computation and MPI communication 
 call MPI_FINALIZE (ierr) 
  



MPI_INIT_THREAD (required, provided, ierr)  
IN: required, desider level of thread support (integer). 
OUT: provided, provided level (integer). 
 provided may be less than required. 

Four levels are supported: 
MPI_THREAD_SINGLE: Only one thread will runs. Equals to 

MPI_INIT.  
MPI_THREAD_FUNNELED: processes may be multithreaded, 

but only the main thread can make MPI calls (MPI calls are 
delegated to main thread) 

MPI_THREAD_SERIALIZED: processes could be 
multithreaded. More than one thread can make MPI calls, 
but only one at a time. 

MPI_THREAD_MULTIPLE: multiple threads can make MPI 
calls, with no restrictions. 

 

11 



Hot to implement: 
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!$OMP PARALLEL DO 

   do i=1,10000 

       a(i)=b(i)+f*d(i) 

  enddo 

!$OMP END PARALLEL DO 

   call MPI_Xxx(...) 

!$OMP PARALLEL DO 

   do i=1,10000 

       x(i)=a(i)+f*b(i) 

   enddo 

!$OMP END PARALLEL DO 

 

#pragma omp parallel for 

      for (i=0; i<10000; i++) 

      { a[i]=b[i]+f*d[i]; 

      } 

/* end omp parallel for */ 

      MPI_Xxx(...); 

#pragma omp parallel for 

      for (i=0; i<10000; i++) 

      { x[i]=a[i]+f*b[i]; 

      } 

/* end omp parallel for */ 

 



Only the main thread can do MPI communications. 
Obviously, there is a main thread for each node 
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    MPI calls outside the parallel region. 

    Inside the parallel region with “omp master”. 
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!$OMP BARRIER 

!$OMP MASTER 

      call MPI_Xxx(...) 

!$OMP END MASTER 

!$OMP BARRIER 

 

There are no synchronizations with “omp master”, thus needs 

 a barrier before and after, to ensure that data and buffers are 

 availabe before 

 and/or after MPI calls 

#pragma omp barrier 

#pragma omp master 

     MPI_Xxx(...); 

#pragma omp barrier 

 



 MPI calls are made “concurrently” by two (or more) different 
threads (all MPI  calls are serialized) 
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 Outside the parallel region 

 Inside the parallel region with ”omp master” 

 Inside the parallel region with  “omp single” 

16 

 

!$OMP BARRIER 

!$OMP SINGLE 

      call MPI_Xxx(...) 

!$OMP END SINGLE 

 

#pragma omp barrier 

#pragma omp single 

     MPI_Xxx(...); 

 



Each thread can make communications at any times. Less 
restrictive and very flexible, but the application becomes 
very hard to manage 
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#include <mpi.h> 

#include <omp.h> 

#include <stdio.h> 

 

int main(int argc, char *argv[]){ 

 int rank,omp_rank,mpisupport; 

 MPI_Init_thread(&argc,&argv,MPI_THREAD_FUNNELED, &mpisupport); 

 MPI_Comm_rank(MPI_COMM_WORLD,&rank); 

 omp_set_num_threads(atoi(argv[1])); 

 #pragma omp parallel private(omp_rank) 

  { 

     omp_rank=omp_get_thread_num(); 

     printf("%d %d \n",rank,omp_rank); 

  } 

  MPI_Finalize(); 

} 

0 0  

0 2  

0 1  

0 3      

1 0  

1 2  

1 1  

1 3 

Output--> 



 Need at least MPI_THREAD_FUNNELED. 

 While the master or the single thread is making MPI 
calls, other threads are doing computations. 

 It's difficult to separate code that can run before or 
after the  exchanged data are available 
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 !$OMP PARALLEL 
     if (thread_id==0) then    
         call MPI_xxx(…)  
     else 
         do some computation 
     endif 
 !$OMP END PARALLEL 
 



 FUNNELED/SERIALIZED:  
 All other threads are sleeping while just one thread is 

communicating. 

 Only one thread may not be able to lead up max internode 
bandwidth 

 Pure MPI: 

 Each CPU communication can lead up max internode bandwidth 

 Overlap communications and computations. 
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 The various implementations differs in levels of thread-
safety 

 If your application allow multiple threads to make MPI 
calls simultaneously, whitout MPI_THREAD_MULTIPLE, is  
not thread-safe 

 In OpenMPI, you have to use –enable-mpi-threads at 
compile time to activate all levels. 

 Higher level corresponds higher thread-safety. Use the 
required safety needs. 
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Collective operations are often 
bottlenecks 

 All-to-all communications 

 Point-to-point can be faster 

Hybrid implementation: 

 For  all-to-all 
communications, the number 
of transfers decrease by a 
factor #threads^2 

 The length of messages 
increases by a factor #threads 

 Allow to overlap 
communication and 
computation. 
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 All-to-all communications 
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 In MPI implementation, each 
process has to exchange ghost-
cell 

 

 This even  two different processes 
are within the same node. This is 
because two different process do 
not share the same memory 
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 The hybrid approach allows you to 
share the memory area where  ghost-
cell are stored 

 

 Each thread has not to do 
communication within the node, since it 
already has available data. 

 

 Communication decreases, and as in 
the previous case, increases MPI 
message size. 
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