
Gabriele Fatigati - g.fatigati@cineca.it

Supercomputing Group

 Multi-node SMP (Symmetric Multiprocessor)
connected by and interconnection network.

 Each node is mapped (at least) one process MPI
and OpenMP threads more.

 Pure MPI Pro:
High scalability

High portability

No false sharing

Scalability out-of-node

 Pure MPI Con:
Hard to develop and debug.

Explicit communications

Coarse granularity

Hard to ensure load balancing

Pure OpenMP Pro:
Easy to deploy (often)

Low latency

Implicit communications

Coarse and fine granularity

Dynamic Load balancing

Pure OpenMP Con:
Only on shared memory machines

Intranode scalability

Possible long waits for unlocking
data

Undefined thread ordering

3

 MPI+OpenMP hybrid paradigm is the trend for clusters
with SMP architecture.

Elegant in concept: use OpenMP within the node and MPI
between nodes, in order to have a good use of shared
resources.

 Avoid additional communication within the MPI node.

 OpenMP introduces fine-granularity.

 The two-level parallelism introduces other problems

 Some problems can be reduced by lowering MPI procs
number

 If the problem is suitable, the hybrid approach can have
better performance than pure MPI or OpenMP codes.

4

5

Each MPI process needs to allocate some extra memory to manage

communications and MPI enviroment.

Threads uses less memory than process. No extra memory => shared

memory

Example: one node having 8 cores and 32 GB. Two ways:

Pure MPI: 8 MPI process, 4 GB for each

Pure MPI: 1 MPI process, 32 GB

Hybrid: 1 MPI process, 8 threads. 32 GB shared per process, 4 GB per

thread.

Optimizing the memory usage

 OpenMP has lower scalability because of locking
resources while MPI has not potential scalability limits.

 All threads are idle except ones during an MPI
communication

Need overlap computation and communication to
improve performance

Critical section for shared variables

 Overhead of thread creation

 Cache coherency and false sharing.

 Pure OpenMP code is generally slower than pure MPI code

 Few optimizations by OpenMP compilers compared to MPI

6

7

#pragma omp parallel for

shared(a) schedule(static,1)

for (int i=0; i<n; i++)

 a[i] = i;

Suppose that each cache line consist

of 4 elements and you are using 4

threads

Each thread store:

 Thread ID Stores

 0 a[0]

 1 a[1]

 2 a[2]

 3 a[3]

 0 a[4]

Assuming that a[0] is the beginning of the cache line,

we have 4 false sharing

The same for a[4]...,a[7]

8

 The cache uses the principle of data spatial proximity

 Concurrent updates to individual elements of the same

threads from different cache line invalidate the entire cache

line.

 Once the cache line is marked as invalid, subsequent

threads are forced to fetch the data from main memory, to

ensure cache coherency.

 This happens because the cache coherence is cache line
based, not on individual item

 A cache that load a single element would not apply
spatial locality, and therefore, any new data would
require fetch from the main memory

 Read-only data does not have this problem

9

10

 call MPI_INIT (ierr)
 call MPI_COMM_RANK (…)
 call MPI_COMM_SIZE (…)
 … some computation and MPI communication
 call OMP_SET_NUM_THREADS(4)
 !$OMP PARALLEL
 !$OMP DO

 do i=1,n
 … computation
 enddo
 !$OMP END DO
 !$OMP END PARALLEL
 … some computation and MPI communication
 call MPI_FINALIZE (ierr)

MPI_INIT_THREAD (required, provided, ierr)
IN: required, desider level of thread support (integer).
OUT: provided, provided level (integer).
 provided may be less than required.

Four levels are supported:
MPI_THREAD_SINGLE: Only one thread will runs. Equals to

MPI_INIT.
MPI_THREAD_FUNNELED: processes may be multithreaded,

but only the main thread can make MPI calls (MPI calls are
delegated to main thread)

MPI_THREAD_SERIALIZED: processes could be
multithreaded. More than one thread can make MPI calls,
but only one at a time.

MPI_THREAD_MULTIPLE: multiple threads can make MPI
calls, with no restrictions.

11

Hot to implement:

12

!$OMP PARALLEL DO

 do i=1,10000

 a(i)=b(i)+f*d(i)

 enddo

!$OMP END PARALLEL DO

 call MPI_Xxx(...)

!$OMP PARALLEL DO

 do i=1,10000

 x(i)=a(i)+f*b(i)

 enddo

!$OMP END PARALLEL DO

#pragma omp parallel for

 for (i=0; i<10000; i++)

 { a[i]=b[i]+f*d[i];

 }

/* end omp parallel for */

 MPI_Xxx(...);

#pragma omp parallel for

 for (i=0; i<10000; i++)

 { x[i]=a[i]+f*b[i];

 }

/* end omp parallel for */

Only the main thread can do MPI communications.
Obviously, there is a main thread for each node

13

 MPI calls outside the parallel region.

 Inside the parallel region with “omp master”.

14

!$OMP BARRIER

!$OMP MASTER

 call MPI_Xxx(...)

!$OMP END MASTER

!$OMP BARRIER

There are no synchronizations with “omp master”, thus needs

 a barrier before and after, to ensure that data and buffers are

 availabe before

 and/or after MPI calls

#pragma omp barrier

#pragma omp master

 MPI_Xxx(...);

#pragma omp barrier

 MPI calls are made “concurrently” by two (or more) different
threads (all MPI calls are serialized)

15

 Outside the parallel region

 Inside the parallel region with ”omp master”

 Inside the parallel region with “omp single”

16

!$OMP BARRIER

!$OMP SINGLE

 call MPI_Xxx(...)

!$OMP END SINGLE

#pragma omp barrier

#pragma omp single

 MPI_Xxx(...);

Each thread can make communications at any times. Less
restrictive and very flexible, but the application becomes
very hard to manage

17

18

#include <mpi.h>

#include <omp.h>

#include <stdio.h>

int main(int argc, char *argv[]){

 int rank,omp_rank,mpisupport;

 MPI_Init_thread(&argc,&argv,MPI_THREAD_FUNNELED, &mpisupport);

 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

 omp_set_num_threads(atoi(argv[1]));

 #pragma omp parallel private(omp_rank)

 {

 omp_rank=omp_get_thread_num();

 printf("%d %d \n",rank,omp_rank);

 }

 MPI_Finalize();

}

0 0

0 2

0 1

0 3

1 0

1 2

1 1

1 3

Output-->

 Need at least MPI_THREAD_FUNNELED.

 While the master or the single thread is making MPI
calls, other threads are doing computations.

 It's difficult to separate code that can run before or
after the exchanged data are available

19

 !$OMP PARALLEL
 if (thread_id==0) then
 call MPI_xxx(…)
 else
 do some computation
 endif
 !$OMP END PARALLEL

 FUNNELED/SERIALIZED:
 All other threads are sleeping while just one thread is

communicating.

 Only one thread may not be able to lead up max internode
bandwidth

 Pure MPI:

 Each CPU communication can lead up max internode bandwidth

 Overlap communications and computations.

20

 The various implementations differs in levels of thread-
safety

 If your application allow multiple threads to make MPI
calls simultaneously, whitout MPI_THREAD_MULTIPLE, is
not thread-safe

 In OpenMPI, you have to use –enable-mpi-threads at
compile time to activate all levels.

 Higher level corresponds higher thread-safety. Use the
required safety needs.

21

Collective operations are often
bottlenecks

 All-to-all communications

 Point-to-point can be faster

Hybrid implementation:

 For all-to-all
communications, the number
of transfers decrease by a
factor #threads^2

 The length of messages
increases by a factor #threads

 Allow to overlap
communication and
computation.

22

23

Collective operations are often

bottlenecks

 All-to-all communications

 Point-to-point can be faster

Hybrid implementation:

 For all-to-all communications, the

number of transfers decrease by a

factor #threads^2

 The length of messages increases by a

factor #threads

 Allow to overlap communication and

computation.

24

Collective operations are often

bottlenecks

 All-to-all communications

 Point-to-point can be faster

Hybrid implementation:

 For all-to-all communications, the

number of transfers decrease by a

factor #threads^2

 The length of messages increases by a

factor #threads

 Allow to overlap communication and

computation.

 In MPI implementation, each
process has to exchange ghost-
cell

 This even two different processes
are within the same node. This is
because two different process do
not share the same memory

25

 The hybrid approach allows you to
share the memory area where ghost-
cell are stored

 Each thread has not to do
communication within the node, since it
already has available data.

 Communication decreases, and as in
the previous case, increases MPI
message size.

26

