Hybrid programming MPI+OpenMP

Gabriele Fatigati — g.fatigati@cineca.it
Supercomputing Group

PPLLL

CINECA > 4

- \ \
- b ¢ N\
§188

The hybrid model

2 Multi-node SMP (Symmetric Multiprocessor)
connected by and interconnection network.

+» Each node is mapped (at least) one process MPI
and OpenMP threads more.

SMP Node 0 SMP Node 1 SMP Node 2

MPI1 0 MPI 1 MPI 2

CPUD CPU 1 CPU 2 CPUD CPU 1 CPU 2 CPUOD CPU 1 CPU2

MPI vs. OpenMP

< Pure MPI Pro: Pure OpenMP Pro:
< High scalability Easy to deploy (often)
< High portability Low latency
< No false sharing Implicit communications
< Scalability out-of-node Coarse and fine granularity
« Pure MPI Con: Dynamic Load balancing
2 Hard to develop and debug. Pure OpenMP Con:
< Explicit communications Only on shared memory machines
% Coarse granularity Intranode scalability
< Hard to ensure load balancing Pogsible long waits for unlocking
ata

Undefined thread ordering

Why hybrid?

- MPI+OpenMP hybrid paradigm is the trend for clusters
with SMP architecture.

Elegant in concept: use OpenMP within the node and MPI
between nodes, in order to have a good use of shared
resources.

» Avoid additional communication within the MPI node.
« OpenMP introduces fine-granularity.
» The two-level parallelism introduces other problems

» Some problems can be reduced by lowering MPI procs
number

» If the problem is suitable, the hybrid approach can have
better performance than pure MPI or OpenMP codes.

Optimizing the memory usage

Each MPI process needs to allocate some extra memory to manage
communications and MPI enviroment.

Threads uses less memory than process. No extra memory => shared
memory

Example: one node having 8 cores and 32 GB. Two ways:

Pure MPI: 8 MPI process, 4 GB for each

Pure MPI: T MPI process, 32 GB

Hybrid: 1 MPI process, 8 threads. 32 GB shared per process, 4 GB per
thread.

Why mixing MPI and OpenMP
code can be slower?

+ OpenMP has lower scalability because of locking
resources while MPI has not potential scalability limits.

+ All threads are idle except ones during an MPI
communication

Need overlap computation and communication to
improve performance

Critical section for shared variables
+» Overhead of thread creation
+ Cache coherency and false sharing.
» Pure OpenMP code is generally slower than pure MPI code
« Few optimizations by OpenMP compilers compared to MPI

False sharing in OpenMP

#pragma omp parallel for Suppose that each cache line consist
SNEEL|E) SenEtiEEEie,n) of 4 elements and you are using 4
for (int i=0; i<n; i++)

threads

a[i] = i;
Each thread store:
Thread ID Stores

0 a[0]
1 a[1]
2 a[2]
3 a[3]
0 a[4]

Assuming that a[0] is the beginning of the cache line,
we have 4 false sharing
The same for a[4]...,a[7]

- The cache uses the principle of data spatial proximity

- Concurrent updates to individual elements of the same
threads from different cache line invalidate the entire cache
line.

- Once the cache line is marked as invalid, subsequent
threads are forced to fetch the data from main memory, to
ensure cache coherency.

» This happens because the cache coherence is cache line
based, not on individual item

» A cache that load a single element would not apply
spatial locality, and therefore, any new data would
require fetch from the main memory

» Read-only data does not have this problem

Pseudo hybrid code

call MPL_INIT (ierr)
call MPI_COMM_RANK...)
call MPI_COMM_SIZE (...)
... some computation and MP| communication
call OMP_SET _NUM_THREADS(4)
ISOMP PARALLEL
ISOMP DO

doi=1,n

... computation

enddo
ISOMP END DO
ISOMP END PARALLEL

... some computation and MP| communication
call MPI_FINALIZE (ierr)

MPI_INIT_Thread support (MPI-2)

MPI_INIT_THREAD (required, provided, ierr)
<IN: required, desider level of thread support (integer).
<OUT: provided, provided level (integer).
< provided may be less than required.

Four levels are supported:

<*MPI_THREAD_SINGLE: Only one thread will runs. Equals to
MPI_INIT.

“*MPI_THREAD_FUNNELED: processes may be multithreaded,
but only the main thread can make MPI calls (MPI calls are
delegated to main thread)

<*MPI_THREAD_SERIALIZED: processes could be
multithreaded. More than one thread can make MPI calls,
but only one at a time.

<*MPI_THREAD_MULTIPLE: multiple threads can make MPI
calls, with no restrictions.

11

MPI_THREAD_SINGLE

Hot to implement:

I$SOMP PARALLEL DO
do i=1,10000
a(i)=b(i)+*d(i)
enddo
I$SOMP END PARALLEL DO
call MPI_Xxx(...)
I$SOMP PARALLEL DO
do i=1,10000
x(D)=a(i)+*b(i)
enddo
ISOMP END PARALLEL DO

#pragma omp parallel for
for (i=0; i<10000; i++)
{ ali]=b[i]+f*d[i;
}

[* end omp parallel for */
MPI_Xxx(...);

#pragma omp parallel for
for (i=0; i<10000; i++)
{ x[i]=a[i]+*Db[i];
}

[* end omp parallel for */

12

MPI_THREAD_FUNNELED

Only the main thread can do MPI communications.
Obviously, there is a main thread for each node

T
B MPI Send & Recvs
paeertt’ &
User Thread MPI_Send/Recv/ Wait / etc.
—
MPI Init thread MPI _Finalize
Other User threads Threads cannot make MPI calls

—_—
—————————————————_"

13

MPI_THREAD_FUNNELED

MPI calls outside the parallel region.
Inside the parallel region with “omp master”.

#pragma omp barrier

ISOMP BARRIER #pragma omp master
ISOMP MASTER MPI_Xxx(...);
call MP1_Xxx(...) #pragma omp barrier

ISOMP END MASTER
ISOMP BARRIER

There are no synchronizations with “omp master”, thus needs
a barrier before and after, to ensure that data and buffers are
availabe before

and/or after MPI calls

14

MPI_THREAD_SERIALIZED

MPI calls are made “concurrently” by two (or more) different

threads (all MPI calls are serialized)

MPI Sénd(..)

User Thread
j—
MAPIInit thread
User Thread
User Thread

v ~
MPI Send(.r

A ;

MPI_Recvy..) P

MP! Recvf..)

— +

» Time

15

MPI_THREAD_SERIALIZED

+» Qutside the parallel region
+ Inside the parallel region with "Jomp master’
+ Inside the parallel region with “omp single”

I$SOMP BARRIER #pragma omp barrier
ISOMP SINGLE #pragma omp single
call MPI_Xxx(...) MPIL_Xxx(...);

ISOMP END SINGLE

16

MPI_THREAD_MULTIPLE

Each thread can make communications at any times. Less
restrictive and very flexible, but the application becomes

very hard to manage

User Thread| ~ MPI_Sénd(..) MPI Send(.)"
MPI_init_thread - o
‘-* o
MPI_Recv(..) mPfRecv(..)

User Thread
. = N @@ | ﬁ

e ————————————————————————————————————— | 1) O

17

A little example

#include <mpi.h>
#include <omp.h>
#include <stdio.h>

int main(int argc, char *argv([]){
int rank,omp_rank,mpisupport;
MPI_Init_thread(&argc,&argv,MPl_THREAD FUNNELED, &mpisupport);
MPI_Comm_rank(MPl_COMM_WORLD,&rank);
omp_set _num_threads(atoi(argv[l]));
#pragma omp parallel private(omp_rank)
{
omp_rank=omp_get thread num();
printf("%d %d \n",rank,omp_rank);

}
MPI_Finalize();

}

18

Overlap communications
and computation

+» Need at least MPI_THREAD_FUNNELED.

+~ While the master or the single thread is making MPI
calls, other threads are doing computations.

« |It's difficult to separate code that can run before or
after the exchanged data are available

ISOMP PARALLEL
if (thread_id==0) then
call MPI_xxx(...)
else
do some computation
endif
ISOMP END PARALLEL

19

THREAD FUNNELED/SERIALIZED

vs. Pure MPI
» FUNNELED/SERIALIZED:

< All other threads are sleeping while just one thread is
communicating.

< Only one thread may not be able to lead up max internode
bandwidth

« Pure MPI:

<» Each CPU communication can lead up max internode bandwidth
» Overlap communications and computations.

20

» The various implementations differs in levels of thread-

safety

« If your application allow multiple threads to make MPI

calls simultaneously, whitout MPI_THREAD_MULTIPLE, is
not thread-safe

+ In OpenMPI, you have to use -enable-mpi-threads at
compile time to activate all levels.

« Higher level corresponds higher thread-safety. Use the
required safety needs.

21

Collective operations are often
bottlenecks

« All-to-all communications
« Point-to-point can be faster

Hybrid implementation:

« For all-to-all
communications, the number
of transfers decrease by a
factor #threadsA?2

+ The length of messages
increases by a factor #threads

« Allow to overlap
communication and
computation.

22

Collective operations are often
bottlenecks
All-to-all communications
Point-to-point can be faster

Hybrid implementation:

For all-to-all communications, the
number of transfers decrease by a
factor #threads”2

The length of messages increases by a
factor #threads

Allow to overlap communication and
computation.

23

Collective operations are often
bottlenecks

<+ All-to-all communications

%+ Point-to-point can be faster

Hybrid implementation:

«» For all-to-all communications, the
number of transfers decrease by a
factor #threads”2

< The length of messages increases by a
factor #threads

<+ Allow to overlap communication and
computation.

24

Domain decomposition

+ In MPIl implementation, each

process has to exchange ghost-
cell

« This even two different processes
are within the same node. This is
because two different process do
not share the same memory

25

Domain decomposition

« The hybrid approach allows you to
share the memory area where ghost-
cell are stored

+ Each thread has not to do
communication within the node, since it
already has available data.

< Communication decreases, and as in
the previous case, increases MPI
message size.

26

