
Gabriele Fatigati - g.fatigati@cineca.it

Supercomputing Group

 Multi-node SMP (Symmetric Multiprocessor)
connected by and interconnection network.

 Each node is mapped (at least) one process MPI
and OpenMP threads more.

 Pure MPI Pro:
High scalability

High portability

No false sharing

Scalability out-of-node

 Pure MPI Con:
Hard to develop and debug.

Explicit communications

Coarse granularity

Hard to ensure load balancing

Pure OpenMP Pro:
Easy to deploy (often)

Low latency

Implicit communications

Coarse and fine granularity

Dynamic Load balancing

Pure OpenMP Con:
Only on shared memory machines

Intranode scalability

Possible long waits for unlocking
data

Undefined thread ordering

3

 MPI+OpenMP hybrid paradigm is the trend for clusters
with SMP architecture.

Elegant in concept: use OpenMP within the node and MPI
between nodes, in order to have a good use of shared
resources.

 Avoid additional communication within the MPI node.

 OpenMP introduces fine-granularity.

 The two-level parallelism introduces other problems

 Some problems can be reduced by lowering MPI procs
number

 If the problem is suitable, the hybrid approach can have
better performance than pure MPI or OpenMP codes.

4

5

Each MPI process needs to allocate some extra memory to manage

communications and MPI enviroment.

Threads uses less memory than process. No extra memory => shared

memory

Example: one node having 8 cores and 32 GB. Two ways:

Pure MPI: 8 MPI process, 4 GB for each

Pure MPI: 1 MPI process, 32 GB

Hybrid: 1 MPI process, 8 threads. 32 GB shared per process, 4 GB per

thread.

Optimizing the memory usage

 OpenMP has lower scalability because of locking
resources while MPI has not potential scalability limits.

 All threads are idle except ones during an MPI
communication

Need overlap computation and communication to
improve performance

Critical section for shared variables

 Overhead of thread creation

 Cache coherency and false sharing.

 Pure OpenMP code is generally slower than pure MPI code

 Few optimizations by OpenMP compilers compared to MPI

6

7

#pragma omp parallel for

shared(a) schedule(static,1)

for (int i=0; i<n; i++)

 a[i] = i;

Suppose that each cache line consist

of 4 elements and you are using 4

threads

Each thread store:

 Thread ID Stores

 0 a[0]

 1 a[1]

 2 a[2]

 3 a[3]

 0 a[4]

Assuming that a[0] is the beginning of the cache line,

we have 4 false sharing

The same for a[4]...,a[7]

8

 The cache uses the principle of data spatial proximity

 Concurrent updates to individual elements of the same

threads from different cache line invalidate the entire cache

line.

 Once the cache line is marked as invalid, subsequent

threads are forced to fetch the data from main memory, to

ensure cache coherency.

 This happens because the cache coherence is cache line
based, not on individual item

 A cache that load a single element would not apply
spatial locality, and therefore, any new data would
require fetch from the main memory

 Read-only data does not have this problem

9

10

 call MPI_INIT (ierr)
 call MPI_COMM_RANK (…)
 call MPI_COMM_SIZE (…)
 … some computation and MPI communication
 call OMP_SET_NUM_THREADS(4)
 !$OMP PARALLEL
 !$OMP DO

 do i=1,n
 … computation
 enddo
 !$OMP END DO
 !$OMP END PARALLEL
 … some computation and MPI communication
 call MPI_FINALIZE (ierr)

MPI_INIT_THREAD (required, provided, ierr)
IN: required, desider level of thread support (integer).
OUT: provided, provided level (integer).
 provided may be less than required.

Four levels are supported:
MPI_THREAD_SINGLE: Only one thread will runs. Equals to

MPI_INIT.
MPI_THREAD_FUNNELED: processes may be multithreaded,

but only the main thread can make MPI calls (MPI calls are
delegated to main thread)

MPI_THREAD_SERIALIZED: processes could be
multithreaded. More than one thread can make MPI calls,
but only one at a time.

MPI_THREAD_MULTIPLE: multiple threads can make MPI
calls, with no restrictions.

11

Hot to implement:

12

!$OMP PARALLEL DO

 do i=1,10000

 a(i)=b(i)+f*d(i)

 enddo

!$OMP END PARALLEL DO

 call MPI_Xxx(...)

!$OMP PARALLEL DO

 do i=1,10000

 x(i)=a(i)+f*b(i)

 enddo

!$OMP END PARALLEL DO

#pragma omp parallel for

 for (i=0; i<10000; i++)

 { a[i]=b[i]+f*d[i];

 }

/* end omp parallel for */

 MPI_Xxx(...);

#pragma omp parallel for

 for (i=0; i<10000; i++)

 { x[i]=a[i]+f*b[i];

 }

/* end omp parallel for */

Only the main thread can do MPI communications.
Obviously, there is a main thread for each node

13

 MPI calls outside the parallel region.

 Inside the parallel region with “omp master”.

14

!$OMP BARRIER

!$OMP MASTER

 call MPI_Xxx(...)

!$OMP END MASTER

!$OMP BARRIER

There are no synchronizations with “omp master”, thus needs

 a barrier before and after, to ensure that data and buffers are

 availabe before

 and/or after MPI calls

#pragma omp barrier

#pragma omp master

 MPI_Xxx(...);

#pragma omp barrier

 MPI calls are made “concurrently” by two (or more) different
threads (all MPI calls are serialized)

15

 Outside the parallel region

 Inside the parallel region with ”omp master”

 Inside the parallel region with “omp single”

16

!$OMP BARRIER

!$OMP SINGLE

 call MPI_Xxx(...)

!$OMP END SINGLE

#pragma omp barrier

#pragma omp single

 MPI_Xxx(...);

Each thread can make communications at any times. Less
restrictive and very flexible, but the application becomes
very hard to manage

17

18

#include <mpi.h>

#include <omp.h>

#include <stdio.h>

int main(int argc, char *argv[]){

 int rank,omp_rank,mpisupport;

 MPI_Init_thread(&argc,&argv,MPI_THREAD_FUNNELED, &mpisupport);

 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

 omp_set_num_threads(atoi(argv[1]));

 #pragma omp parallel private(omp_rank)

 {

 omp_rank=omp_get_thread_num();

 printf("%d %d \n",rank,omp_rank);

 }

 MPI_Finalize();

}

0 0

0 2

0 1

0 3

1 0

1 2

1 1

1 3

Output-->

 Need at least MPI_THREAD_FUNNELED.

 While the master or the single thread is making MPI
calls, other threads are doing computations.

 It's difficult to separate code that can run before or
after the exchanged data are available

19

 !$OMP PARALLEL
 if (thread_id==0) then
 call MPI_xxx(…)
 else
 do some computation
 endif
 !$OMP END PARALLEL

 FUNNELED/SERIALIZED:
 All other threads are sleeping while just one thread is

communicating.

 Only one thread may not be able to lead up max internode
bandwidth

 Pure MPI:

 Each CPU communication can lead up max internode bandwidth

 Overlap communications and computations.

20

 The various implementations differs in levels of thread-
safety

 If your application allow multiple threads to make MPI
calls simultaneously, whitout MPI_THREAD_MULTIPLE, is
not thread-safe

 In OpenMPI, you have to use –enable-mpi-threads at
compile time to activate all levels.

 Higher level corresponds higher thread-safety. Use the
required safety needs.

21

Collective operations are often
bottlenecks

 All-to-all communications

 Point-to-point can be faster

Hybrid implementation:

 For all-to-all
communications, the number
of transfers decrease by a
factor #threads^2

 The length of messages
increases by a factor #threads

 Allow to overlap
communication and
computation.

22

23

Collective operations are often

bottlenecks

 All-to-all communications

 Point-to-point can be faster

Hybrid implementation:

 For all-to-all communications, the

number of transfers decrease by a

factor #threads^2

 The length of messages increases by a

factor #threads

 Allow to overlap communication and

computation.

24

Collective operations are often

bottlenecks

 All-to-all communications

 Point-to-point can be faster

Hybrid implementation:

 For all-to-all communications, the

number of transfers decrease by a

factor #threads^2

 The length of messages increases by a

factor #threads

 Allow to overlap communication and

computation.

 In MPI implementation, each
process has to exchange ghost-
cell

 This even two different processes
are within the same node. This is
because two different process do
not share the same memory

25

 The hybrid approach allows you to
share the memory area where ghost-
cell are stored

 Each thread has not to do
communication within the node, since it
already has available data.

 Communication decreases, and as in
the previous case, increases MPI
message size.

26

